Summary of C13-NMR Interpretation

1. **Count how many lines** you have. **This will tell you how many types of carbons** you have. (Symmetry equivalent carbons can at times cause the number of lines to be less than the number of carbons in your structure.)
 c. Each “unique” carbon gives a separate line.
 d. Symmetry duplicates give the same line.
 e. If there are more carbons in your formula than there are lines in your spectrum, it means you have symmetry.

2. **Check diagnostic frequency windows** (“chemical shift windows”) of the lines to provide yes-or-no answers regarding the presence or absence of key functional groups in your molecule.

 - 220-160 C=O carbonyl carbons, sp² hybridized
 - 160-100 C alkene or aromatic carbons, sp² hybridized
 - 100-50 C-O oxygen-bearing carbons, single bonds only, sp³ hybridized
 - 50-0 C alkyl carbons, no oxygens attached, sp³ hybridized

3. **Use DEPT and/or Coupled C13 NMR to Differentiate C, CH, CH2, and CH3 carbons.**

<table>
<thead>
<tr>
<th>Type of C</th>
<th>Name</th>
<th>DEPT-135</th>
<th>Coupled C13</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃</td>
<td>Methyl</td>
<td>Up</td>
<td>Quartert (q)</td>
</tr>
<tr>
<td>CH₂</td>
<td>Methylene</td>
<td>Down</td>
<td>Triplet (t)</td>
</tr>
<tr>
<td>CH</td>
<td>Methane</td>
<td>Up</td>
<td>Doublet (d)</td>
</tr>
<tr>
<td>C</td>
<td>Quaternary</td>
<td>Absent</td>
<td>Singlet (s)</td>
</tr>
<tr>
<td></td>
<td>(no attached hydrogen)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. **Aromatics, Symmetry, and C-13 Signals.** Most aromatics have symmetry, and both the number of aromatic lines and the splitting of the aromatic lines can be indicative of the substitution pattern on a benzene. Mono- and para-disubstituted benzenes have symmetry.

 - 4 lines s, d, d, d Monosubstituted benzene. (Has symmetry)
 - 4 lines s, s, d, d Para-disubstituted benzene. (Has symmetry)
 - 6 lines s, s, d, d, d Ortho- or meta-disubstituted benzene. (Has no symmetry)

5. **Signal Height/Size**
 a. Carbons without any attached H’s are short. This is common for carbonyls (aldehydes are the only carbonyl carbons that have hydrogens attached) and for substituted carbons in a benzene ring.
 b. Symmetry duplication multiplies signal height (if you have two copies of a carbon, the line will probably be taller than normal!)