5 Major Electrophilic Aromatic Substitution Reactions

	H Br	Activatin <u>g/</u> <u>Deactivating</u>	Ortho/Para Or Meta <u>Directing</u>	<u>Book</u>
1	+ Br ₂ $\frac{\text{FeBr}_3 \text{ (cat.)}}{\text{(or Fe cat)}}$ (+ HBr)	Deactivating	Ortho/Para	17.2
	$H + Cl_2 \xrightarrow{\text{AICl}_3 (\text{cat.})} (+ \text{HCl})$	Deactivating	Ortho/Para	17.2

The halides are unique in being deactivating but ortho/para directing. All other o/pdirectors are activating, and all other deactivating groups are m-directors. <u>Mech</u>

2
$$H_{2} \rightarrow H_{2}SO_{4} \rightarrow H_{2}O_{1}$$
 Deactivating Meta 17.3

The product can be reduced to $Ar-NH_2$ by Fe/HCl or Sn/HCl. Nitration/Reduction provides an effective way to introduce an NH_2 group. Reduction converts mdirecting NO_2 group into an o/p-directing NH_2 group. Mech required.

3
$$H + R-X \xrightarrow{AlCl_3 (cat.)} H + R-X \xrightarrow{AlCl_3 (cat.)} H + HCl)$$

- a. Restricted to 3°, 2°, or ethyl halides. 1° halides suffer carbocation rearrangements.
- b. Since product is more active than starting material, polyalkylation is often a serious problem.
- c. Fails with strongly deactivated benzenes.

Mech required.

Deactivating Meta 17.11

- a. The product can be reduced to $-CH_2R$ by Zn(Hg)/HCl.
- b. The acylation-reduction sequence provides an effective way to introduce a 1° alkyl group.
- c. Reduction converts meta-directing acyl group into an ortho/para-directing alkyl group.

Mech required.

5
$$H$$
 + SO₃ H_2 SO₄ SO_3 H

Deactivating Meta 17.4

The sulfonyl group is a useful para-blocking group, since it can later be removed upon treatment with H_2O/H^+ .

1

5 Major Aromatic Support Reactions

• "NBS" is N-bromosuccinimide, which functions just like Br₂/peroxides, but is much more convenient and cleaner because it avoids competing reactions caused by lots of Br₂ and HBr.

Mech required.