Synthesis of Ketones and Aldehydes

1. Ph\(-\text{OH}\) → Ph\(-\text{CHO}\)
 \(\text{PCC}\)

2. Ph\(-\text{OH}\) → Ph\(-\text{CO}\)
 \(\text{H}_2\text{CrO}_4\)

3. Ph\(-\text{C\(\equiv\)H}\)
 1. BH\(_3\)·THF
 2. NaOH, H\(_2\)O\(_2\)
 Ph\(-\text{OH}\) → Ph\(-\text{CHO}\)
 \(\text{PCC}\)

4. Ph\(-\text{C\(\equiv\)H}\) → Ph\(-\text{OH}\) → Ph\(-\text{CO}\)
 \(\text{H}_2\text{O}, \text{H}^+\), \(\text{H}_2\text{CrO}_4\)

5. Ph\(-\text{C\(\equiv\)H}\)
 1. O\(_3\)
 2. Me\(_2\)S

6. Ph\(-\text{C\(\equiv\)H}\)
 Aldehyde
 1. RMgBr
 2. H\(^+\)
 Ph\(-\text{OH}\) → Ph\(-\text{C\(\equiv\)H}\)
 \(\text{H}_2\text{CrO}_4\)
 Ketone

7. Ph\(-\text{C\(\equiv\)H}\)
 acid or ester
 1. LiAlH\(_4\)
 2. H\(^+\)
 Ph\(-\text{OH}\) → Ph\(-\text{C\(\equiv\)H}\)
 \(\text{PCC}\)
 aldehyde

8. R\(-\text{Br}\) → R\(-\text{OH}\) → R\(-\text{CHO}\)
 \(\text{NaOH}\), \(\text{PCC}\)

9. Br → R\(-\text{OH}\) → R\(-\text{CO}\)
 \(\text{NaOH}\), \(\text{H}_2\text{CrO}_4\)

10. Ph\(-\text{C\(\equiv\)H}\)
 Markovnikov Addition
 \(\text{Hg}^{2+}, \text{H}_2\text{O}\), \(\text{H}_2\text{SO}_4\)
 \(\text{PCC}\)
 Ketone

11. Ph\(-\text{C\(\equiv\)H}\)
 Anti-Markovnikov Addition
 1. (Sia)\(_2\)BH
 2. NaOH, H\(_2\)O\(_2\)
 Ph\(-\text{C\(\equiv\)H}\) \(\text{MECH}\)
 Aldehyde
Reactions of Ketones and Aldehydes

19

\[
\begin{align*}
\text{aldehyde or ketone} & \quad \text{1. RMgBr} \quad \left[\begin{array}{c} R' R \\ \text{anion intermediate} \end{array}\right] \quad \text{Protonate} \quad \text{OH} \\
& \quad \text{2. H}^+ \\
\end{align*}
\]

Anionic

18.12, 10.9

20

\[
\begin{align*}
\text{aldehyde or ketone} & \quad \text{NaBH}_4 \quad \text{or LiAlH}_4 \\
& \quad \left[\begin{array}{c} R' R \\ \text{anion intermediate} \end{array}\right] \quad \text{Protonate} \quad \text{OH} \\
\end{align*}
\]

Anionic

18.12, 10.11

21

\[
\begin{align*}
\text{aldehyde or ketone} & \quad \text{KCN, HCN} \\
& \quad \left[\begin{array}{c} R' R \\ \text{anion intermediate} \end{array}\right] \quad \text{Protonate} \quad \text{OH} \\
\end{align*}
\]

Anionic

18.15

22

\[
\begin{align*}
\text{aldehyde or ketone} & \quad \text{H}_2\text{O}, \text{OH}^- \\
& \quad \left[\begin{array}{c} \text{OH} \\ \text{tetrahedral "hydrate"} \end{array}\right] \quad \text{"Hydrates" are present only as transient equilibrium species. They never form to 100% and are never isolable. Always in equilibrium their aldehyde or ketone.} \\
\end{align*}
\]

Anionic

18.14

23

\[
\begin{align*}
\text{aldehyde or ketone} & \quad \text{H}_2\text{O}, \text{H}^+ \\
& \quad \left[\begin{array}{c} \text{OH} \\ \text{tetrahedral "hydrate"} \end{array}\right] \quad \text{"Hydrates" are present only as transient equilibrium species. They never form to 100% and are never isolable. Always in equilibrium with their aldehyde or ketone.} \\
\end{align*}
\]

Cationic

18.14
Cationic

Notes:
- Reactions are reversible
- The “hemiacetal” is an intermediate, and can never be isolated
- The acetal can be isolated.
- Equilibrium considerations (LeChatelier’s principle) apply. When water is plentiful, things go to the left. When water is scarce or removed, and alcohol is abundant, things drive to the right.
- Use $\text{H}_2\text{O}/\text{H}^+$ to hydrolyze an acetal back to an aldehyde or ketone
- Use MeOH/H^+ to convert an aldehyde to an acetal
- Use $\text{HOCH}_2\text{CH}_2\text{OH}/\text{H}^+$ to convert a ketone to an acetal
- Aldehydes or ketones can be temporarily “protected” as their acetals, then later “deprotected” by hydrolysis

Cationic

Notes:
- “Z” can be a carbon, nitrogen, oxygen, or hydrogen atom/group.
- The “aminol” can’t be isolated, it’s only present at equilibrium.
- Equilibrium factors apply. Water drives to the carbonyl side; removal of water drives to the imine side.
“Tollens test” is a common chemical test for aldehydes. Ag$^+$ undergoes redox reaction with aldehydes to produce shiny Ag metal, or a “silver mirror”.

Notes:
- Acidic conditions. Doesn’t work well for molecules with acid-sensitive functionality.
- Works best for aromatic carbonyls. Saturated carbonyls are slower and less efficient.
- Acidic nature is complementary to the basic analog below.

No Mech Responsibility

Basic conditions. Doesn’t work well for molecules with base-sensitive functionality.

Basic nature is complementary to the acidic analog above.

No Mech Responsibility

Notes:
- Unique access to 2-hydroxyacids.

Used in combination with reaction 21, the formation of the hydroxy-nitrile.