TEST ONE SKILLS/OBJECTIVES / OUTCOMES / COMPETENCIES

Ch		TEST ONE	Self-Assessment (Some but not all	Graded Assessment
1	Structure	Identify number of bonds and lone pairs for uncharged 2 nd -row atoms	Graded) 1. In-lecture in-	1. Sapling
	Determines Properties	Draw and interpret Lewis, condensed, and line-angle structural formulas, including those involving double or triple bonds.	notes problems	homework
		Recognize when covalent versus ionic bonding exists Recognize and calculate formal charges and lone pairs given bond connectivity	2. Practice sets online	2. Quiz 1 and Quiz 2
		5. Populate lone pairs given formal charges and bond connectivity6. Identify and draw resonance structures, and use them to predict stabilities.	3. Practice Tests	3. Test 1
		7. Use arrow-pushing to display electron movement between resonance structures	4. Sapling homework	4. Final Exam
		8. Use principles of electronegativity to predict bond polarity, predominant resonance form, anion stability, anion basicity, and acidity	problems	
		9. Use arrow-pushing to display electron movement in chemical reactions 10. Identify acids and bases, and predict whether an acid-base equilibrium will favor products or reactants	5. Book practice problems	
		Predict relative acidities and basicities based on structure, bonding, charge, electronegativity, and resonance of conjugate acid-base pairs.		
2	Alkanes and Cycloalkanes: Introduction to	12. Predict the hybridization, electron geometry, and approximate bond angles relative to atoms in a molecule	1. In-lecture in- notes problems	1. Sapling homework
	Hydrocarbons	 13. Identify sigma versus pi bonds, and rank bond strengths 14. Draw 3-dimensional representation of given molecules, using the hashwedge convention. 	2. Practice sets online	2. Quiz 2
		15. Identify polar and nonpolar molecules, and predict which ones can engage in hydrogen-bonding.	3. Practice Tests	3. Test 1
		16. Predict general trends in the boiling points and solubilities of compounds, based on their size, polarity, and hydrogen-bonding ability.	4. Sapling	4. Final Exam
		17. Identify the classes of compounds, the "functional groups", including hydrocarbons and organic molecules containing oxygen or nitrogen, and draw structural formulas for examples	homework problems	
		18. Identify when pairs of structures are related as structural isomers, stereoisomers, resonance structures, or as the same.	5. Book practice problems	
		19. Correctly name alkanes and cycloalkane20. Given the name of an alkane, draw the structure and give the molecular formula	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
3	Alkanes and Cycloalkanes:	21. Use Newman projections to compare the energies of alkane conformations22. Draw best and worst Newman projections relative to any individual bond	1. In-lecture in- notes problems	1. Sapling homework
	Conformation and cis-trans Stereoisomers	 23. Use torsional and steric strain terminology to explain differences in rotation barriers and in Newman-projection stabilities 24. Identify, name, and draw cis and trans stereoisomers of di-substituted 	2. Practice sets online	2. Test 1
		cycloalkanes 25. Compare the energies of cycloalkanes, and explain ring strain	3. Practice Tests	3. Final Exam
		26. Draw accurate cyclohexane chair conformation, including cis- or trans- disubstituted cases, and including "left-" and "right-handed" chair conformations	4. Sapling homework	
		27. Illustrate and identify axial versus equatorial substituents on cyclohexane chairs; and predict the most stable conformations of di-substituted cases.	problems	
		28. Based on chemical formula, identify whether an alkane is cyclic or acyclic 29. Given a chemical formula for an alkane, draw and name structural isomers	5. Book practice problems	