Capillary Electrophoresis
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Electrophoresis is a separation technique based on
the differential transportation velocities of charged
species in an electric field through a conductive
medium.

Primary candidates for CE separation are ions.

The basic instrumental set-up consists of a high
voltage power supply (0 to 30 kV), a fused silica (SiO,)
capillary filled with a (background) buffer solution, two
buffer solution reservoirs, two electrodes, and an
on-column detector.

Detector
Injection I
(analyte(s) plug) -
+ 1 ] -
Lt
Ld
\Y

A lower value of H corresponds to a higher separation
efficiency — when the plate height is reduced, more
theoretical plates (N ~ 50,000 to 500,000) can be
packed into a given length along the separation axis.

Resolution is proportional to VN.

In CE, two terms in Van Deemter Equation are zero;
multiple-path term, A, mass-transfer term, C,

because the separation is carried out in a single phase
of uniformly flowing carrier liquid.

Only source of band broadening under ideal conditions
is from the longitudinal diffusion term, B.
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Electrophoretic Velocity: The velocity of a charged
analyte under the influence of an electric field relative
to the background electrolyte.

http://goldbook.iupac.org/ET06925.html
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Tightly bound layer and surface charges
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Electrophoretic velocity

Electro-osmotic velocity U,

The mobility due to a species being swept along in
a flow arising from a buffer solution’s response to an
applied electric field (electro-osmotic flow).

In the case CE, negative charges on the silica capillary
wall create a double layer of charge.

The layer next to surface is rich in mobile, solvated
cations which move towards the cathode and drag
along anions and neutrals.

Structure of the capillary surface in contact with a
buffer solution is electrically charged when in contact
with buffer. In a basic buffer, for example the surface

is negatively charged.
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The bulk solution containing the buffer
moves toward an electrode, here toward (-);
electro-osmotic flow (EOF).
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(pH<=2, surface neutral; EOF=0)

u >u>u. (pH>=11, highly charged)



Apparent mobilities

u
>> — o _
m, >>m, Mo =—£ =,
My, = My + My, _ Ly / tora

M,
Mep- = My = M. vk

m=m,
Mpp, > M> My

NHY NHY NHY
NH;. _ NHA¢ NHAC --
=
LN HEN AcHN A:HN
NHy HHF
Protein (+4) +3

Figure pg el

Una
D rawvial V\bﬂinﬂnﬂ Edlien
et

Example: Determine the charge of unmodified protein

r ~ nearly same for all species.
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Protein charge ladder. Acetylated bovine carbonic anhydrase

The electro-osmotic mobility and electrophoretic
mobility can cause anions, cations and neutrals to have
a net migration towards the cathode because generally
the bulk solution has a net positive charge.

Depending on the charge and size, the molecules/ions
move through at different speeds; separation is achieved.
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Efficiency in CE

The only contributor to peak broadening, practically,
is diffusion.

A plug of analyte diffuses out to produce a Gaussian
curve of distribution of concentration. The o of it, in
this case is given by the Einstein’s Law;
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Controlling the nature of EQOF:

The direction of the EOF can be changed with a
cationic surfactant bilayer.

] | silica wall with bound
negative charges
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Wall charge can be manipulated by derivatization of
silanol groups on the wall surface, and also by adding
modifiers to the (running) buffer solution

o. wOCH;
Sy ) derivatization
fo] Ov_b, Polyacrylamide
N modifier
NH, + NH +

Anode | Cathode
(a) Electroosmotic velocity profile

High Low
pressure pressure

Hydrodynamic velocity profile
L (laminar flow)

Electro-osmotic flow as opposed to laminar flow
decreases broadening .
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Hydrodynamic Electrolytic

Uses the pressure difference Electric field drives
between capillary ends sample into capillary



Hydrodynamic injection is accomplished by the
application of a pressure difference between the two

ends of a capillary. The amount of sample injected can

be calculated by the Poiseuille equation.

Hydrodynamic injection volume:

APpd*t
1260,

Volume =

AP is the pressure difference between the ends of the
capillary, d is the inner diameter of the capillary, tis
the injection time,h is the sample viscosity, and

L, is the total length of the capillary.

Concentrations (optimum):

Sample buffer ~ 1/10 background electrolyte (buffer)
Sample ~1/500 background electrolyte (buffer)
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Band skewing:

If the conductivities of the run electrolyte
(background) and that of the analyte region are
very different, distortions of the peaks occur.

Electro-kinetic injection is performed by simply turning

on the voltage for a certain period of time. The moles of
each analyte injected, determined by the apparent
mobility of each analyte, M,,,; the injection time, t; and
the ratio of conductivities of the separation buffer and
sample, concentration of the analyte ion C.

Electro-kinetic injection amount:

k
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Because each analyte has a different mobility,
electro-kinetic injection is biased. For qualitative
analysis, this is not usually a problem. For quantitative
analysis, the concentration/composition of the injected
sample can be different than that of the original sample.

One of the main advantages of CE is its ability to
inject extremely small volumes of sample. Typical
injection volumes range from pico-liters to nano-

liters.
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* Detectors
— UV/Visible absorption
— Fluorescence
— Radiometric (for radioactive substances)
— Mass Spec.

Mass spectrometric 1x10"

Electrochemical
Conductivity 1x10"

Ampsrometric 7x10"

Joule heating. Joule heating is a consequence of the
resistance of the solution to the flow of current.

H=VIt

If the heat is not sufficiently dissipated from the system

the resulting temperature and density gradients can
reduce the separation efficiency. The capillary walls
used in CE must dissipate efficiently.
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Frecclumn derivatization 107 -10"
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Micellar Electro-kinetic Chromatography

Neutral molecule equilibrates
between free solution and
inside of micelle
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