Does “Fight or Flight” Need Updating?

TO THE EDITOR: Walter Cannon’s original formulation of the term for the human response to threat, “fight or flight,” was coined exactly 75 years ago, in 1929. It is an easily remembered catchphrase that seems to capture the essence of the phenomena it describes. It accurately evokes two key behaviors that we see occurring in response to threat. This phrase has led to certain ingrained assumptions about what to expect in our patients and, because of its broad usage, what they expect of themselves. It is a testament to the foundational significance of Cannon’s work that the term he used continues to shape clinical understanding and to influence popular culture’s understanding of stress as well. But the phrase has not been updated to incorporate important advances in the understanding of the acute response to extreme stress. Specifically, the term ignores major advances in stress research made since it was coined.

Both human and animal research on the pan-mammalian response to stress has advanced considerably since 1929, and it may be time to formulate a new form of this catchphrase that presents a more complete and nuanced picture of how we respond to danger.

The phrase “fight or flight” has influenced the understanding and expectations of both clinicians and patients; however, both the order and the completeness of Cannon’s famous phrase are suspect. “Fight or flight” mischaracterizes the ordered sequence of responses that mammals exhibit as a threat escalates or approaches. In recent years, ethologists working with non-human primates have clearly established four distinct fear responses that proceed sequentially in response to increasing threat. The order of these responses may have important implications for understanding and treating acute stress in humans.

The sequence, originally described by Jeffrey A. Gray, begins with what ethologists call “the freeze response” or “freezing,” terms corresponding to what clinicians typically refer to as hypervigilance (being on guard, watchful, or hyper-alert). This initial freeze response is the “stop, look, and listen” response associated with fear. The survival advantage of this response is obvious. Specifically, ethological research has demonstrated that prey that remain “frozen” during a threat are more likely to avoid detection because the visual cortex and the retina of mammalian carnivores primarily detect moving objects rather than color.

After this initial freeze response, the next response in the sequence is an attempt to flee, and once this has been exhausted, there is an attempt to fight—in that order. Thus, “fight or flight” is the proper order of responses rather than “fight or flight.” This reversal of order may have nontrivial clinical implications that become clear once one examines the conflicting demands of biological and social imperatives often present in life-threatening situations. Overcoming the biological predisposition to act one way when sociocultural norms demand another type of action complicates an already overwhelming scenario.

To illustrate, consider a military combat situation. When a soldier encounters an initial sign of threat, the socially appropriate response, i.e., the response demanded by his military training and reinforced by other members of his unit, is usually the “stop, watch, and listen” heightened-alertness response. This behavior is consistent with the biological predisposition toward the first part of the sequence: the freeze response. As the reality of a fire-fight grows imminent, however, the biological and situational demands are no longer in concert. The evolved hard-wired instinctual response to flee is in conflict with his/her military training. This conflict is bound to further increase the intensity of this already stressful experience. It is a conflict that is hidden, however, by the misconception that a human’s first instinct is to fight.

In addition to the omission of the initial freezing response, other important fear responses have remained obscured, in part because of their omission from “fight or flight,” and these other fear responses have important clinical implications as well. The next step in the sequence of fear-circuitry responses after fighting is tonic immobility. This response occurs during direct physical contact with the carnivore (or the human predator). Tonic immobility was referred to as “playing dead” in the early ethological literature and has been referred to as peritraumatic “panic-like” symptoms in the posttraumatic stress disorder literature.

We prefer a term widely used in Europe: “fright.” The corresponding French term is “effroi.” “Fright” is also the English word that best captures the Kraepelinean (and modern German) concept of “Schreck” as in “Schreckneurosen.” Furthermore, the ethological term “freeze” discussed closely resembles the meaning of “fright” in military and police parlance.

Unfortunately, in child psychology, “fright” (tonic immobility) has
also been referred to as “freezing.” This has created much confusion. The tonic immobility (fright) response is pan-mammalian. Tonic immobility is most useful when a slow-moving vulnerable organism (e.g., the opossum) is confronted with a life-threatening situation involving mobile, large predators. Tonic immobility may enhance survival when a predator temporarily loosens its grip on captured prey under the assumption that it is indeed dead, providing the prey with an opportunity for escape. It is also a response that may be adaptive in humans when there is no possibility of escaping or winning a fight.7

The clinical relevance of tonic immobility as a survival response may be illustrated best in relation to the behavior of some victims of violence or sexual assault who exhibit extreme passivity during the assault. Here again, an understanding of the hard-wired nature of the response might help ameliorate one dimension of the painful memories that plague some victims who wonder why they did not put up more of a fight.

We propose the adoption of the expanded and reordered phrase “freeze, flight, fight, or fright” as a more complete and nuanced alternative to “fight or flight.” While we cannot hope to compete with the legacy of Cannon’s phrase in the culture at large, adoption of this alternative term within the clinical community may help keep clinicians aware of the relevant advances in understanding of the human stress response made since the original term “fight or flight” was coined three-quarters of a century ago. H. Stefan Bracha, M.D. Tyler C. Ralston, M.A. Jennifer M. Matsukawa, M.A. National Center for PTSD, Department of Veterans Affairs, Pacific Islands Health Care System, Spark M. Matsunaga Medical Center, Honolulu, Hawaii

Andrew E. Williams, M.A. Department of Psychology, University of Hawaii at Manoa, Honolulu, Hawaii

Adam S. Bracha, B.A. Biomedical-Research Consultant. Honolulu, Hawaii

This material is based upon work supported in part by the Office of Research and Development, Medical Research Service, Department of Veterans Affairs, VA Pacific Islands Health Care System, Spark M. Matsunaga Medical Center. Support was also provided by a National Alliance for Research on Schizophrenia and Depression (NARSAD) Independent Investigator Award and the VA National Center for PTSD.

References


Hypertensive Urgency With Clonidine and Mirtazepine

TO THE EDITOR: We report a case of hypertensive urgency in a patient maintained with clonidine and mirtazepine prescribed concurrently. This interaction has been previously reported in the medical literature as “hypertensive urgency.” To our knowledge, this is the first such report in the psychiatric literature and would benefit colleagues who practice psychopharmacology and need to be aware of this potential interaction, which can result in serious life-threatening hypertensive urgency.2

Case Report

Mr. A was a 53-year-old man with a history of major depressive disorder, posttraumatic stress disorder, alcohol dependence, hepatitis C, and hypertension. He was admitted to an inpatient psychiatry unit for alcohol detoxification. He was placed on a temazepam taper: day 1, 30 mg of oral temazepam every 6 hours; day 2, 30 mg every 8 hours; day 3, 30 mg every 12 hours; day 4, 30 mg/day; and then discontinuation. The taper was completed over 4 days with an uneventful detoxification.

On admission, Mr. A’s antihypertensive medications were 0.1 mg of clonidine every 8 hours, 40 mg b.i.d. of lisinopril, 50 mg b.i.d. of metropolol, and a clonidine patch of 0.3 mg every 8 hours.

For the treatment of depression, Mr. A was given mirtazepine, 30 mg/day, on hospital day 1. On hospital day 4, his dose was increased to 45 mg/day, and the 45-mg dose was given at 9:01 p.m. Later that night, at 11:33 p.m., Mr. A’s blood pressure increased to 250/130 mm Hg. He was asymptomatic and was taken to the emergency room, where he received two doses of intra-
Torsades de Pointes Caused by a Small Dose of Risperidone in a Terminally Ill Cancer Patient

TO THE EDITOR: Delirium is a common complication in terminally ill cancer patients, and the palliation of delirious symptoms is important.1 Risperidone, a new antipsychotic, has been increasingly used for delirious patients.2 Risperidone is generally safe and has mild adverse effects in comparison with classical antipsychotics such as haloperidol and chlorpromazine but may cause QT-prolonged syndrome, which is associated with an increased risk of dysrhythmia and sudden cardiac death.3–5

However, there have been no empirical reports on torsades de pointes syndrome induced by risperidone. Here, we report the first case of a terminally ill cancer patient who developed torsades de pointes syndrome after receiving risperidone for palliation of delirium.

Case Report

Ms. A, an 84-year-old woman with colon cancer, was admitted to our palliative care unit for symptom palliation of delirium and pain. On admission, she had somnolence, disorientation, mild psychomotor agitation, and was diagnosed with delirium according to DSM-IV. She received oral morphine and glibenclamide. She exhibited serious cachexia, and the abdomen was filled with a huge mass. Laboratory examinations revealed mild liver dysfunction (total bilirubin: 0.7 mg/dl; GOT: 49 IU; GPT: 39 IU; alkaline phosphatase: 355 IU) and hyperglycemia (663 mg/dl). Radiological examinations identified massive liver and intra-abdominal lymph node metastasis.

ECG results were normal with corrected QT interval of 0.46 seconds. We attributed the underlying etiologies of delirium to morphine and hyperglycemia. Therefore, we replaced the daily 60-mg oral morphine regimen with 500 µg/day intravenous fentanyl and adjusted the sugar levels. In addition, Ms. A received oral risperidone, 0.5 mg/day, on days 5, 6, 9, and 11, when at-titated. Pain and agitation were well controlled within a week.

On day 14, she suddenly complained of chest discomfort. Physical examination identified tachycardia at 200 bpm, and an ECG revealed polymorphic ventricular tachycardia (torsades de pointes). Immediately, she received 2.47 g of intravenous magnesium sulfate, and the rhythm became normal. A repeat ECG demonstrated normal sinus rhythm and the prolonged QT interval at 0.58 seconds. Laboratory examinations revealed deterioration of liver function (total bilirubin: 3.6 mg/dl; GOT: 321 IU; GPT: 221 IU; alkaline phosphatase: 4280 IU), and electrolytes were all within normal limits (sodium: 138 meq/liter; potassium: 4.2 meq/liter; chloride: 104 meq/liter; calcium: 8.0 mg/dl). Ultrasonography identified obstruction of the bile duct.

Risperidone was discontinued, and a follow-up ECG on day 16 demonstrated normal corrected QT interval (0.45 seconds). Dysrhythmia did not recur. She died because of liver failure from the underlying malignancy. Bile drainage was not performed because of poor general conditions and her wishes.

Discussion

To date, there has been a single case report of sudden death after moderate doses of risperidone and several case reports of patients with QT prolongation syndrome.3–5 To our knowledge, this is the first case of torsades de

References

pointes occurring in a terminally ill cancer patient receiving a very small dose of risperidone.

Risperidone is mainly metabolized in the liver by CYP2D6 enzymes. The probable mechanisms of QT prolongation syndrome in this patient may involve liver dysfunction caused by the underlying malignancy, impaired metabolism, and the toxicity induced by elevated concentrations of unmetabolized risperidone.

This case illustrates that clinicians should note that risperidone may cause the prolongation of QT interval leading to dysrhythmia and sudden cardiac death in all patients with liver dysfunction, even if the dose is very low.

Yo Tei, M.D.
Tatsuya Morita, M.D.
Satoshi Inoue, M.D.
Haruo Miyata, M.D.
Seirei Mikatabara Hospital, Shizuoka, Japan

References
1. Breitbart W, Jaramillo JR, Chochinov HM: Palliative and terminal care, in Psychosomatics 45:5, September-October 2004