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Abstract

High-fat diets produce obesity in part because, per calorie, glucose produces greater post-prandial thermogenesis than lipids, an effect

probably mediated by glucose-sensing neurons. A very low-carbohydrate/high-fat/high-protein Atkins-type diet produces obesity but is

marginally ketogenic in mice. In contrast, high-sucrose/low-fat diets, and very low-carbohydrate/high-fat/low-protein (anti-epileptic)

ketogenic diets reverse diet-induced obesity independent of caloric intake. We propose that a non-ketogenic high-fat diet reduces glucose

metabolism and signaling in glucose-sensing neurons, thereby reducing post-prandial thermogenesis, and that a ketogenic high-fat diet

does not reduce glucose signaling, thereby preventing and/or reversing obesity.

r 2006 Elsevier Ltd. All rights reserved.
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Do low-carbohydrate diets promote or reverse obesity?

‘‘A systematic review of low-carbohydrate diets found
that the weight loss achieved is associated with the duration
of the diet and restriction of energy intake, but not with
restriction of carbohydrates.’’(Astrup, Meinert Larsen, &
Harper, 2004)

‘‘This review covers evidence from carefully controlled
laboratory studies, clinical trials, studies in populations at
high risk of developing obesity, and epidemiologic studies
on the role of sugars, particularly sucrose, in the
development of obesity. Although many environmental
factors promote a positive energy balance, it is clear that
the consumption of a low-carbohydrate, high-fat diet
increases the likelihood of weight gain.’’ (Saris, 2003)

These two statements, from recent reviews, neatly state
the current consensus regarding the effect of dietary
composition on obesity. In fact, despite the enormous
popularity of low-carbohydrate diets such as the Atkins
diet, the South Beach diet, and the Zone diet, the
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professional consensus is that low-carbohydrate diets
(which typically implies high-fat diets) are more likely to
produce obesity than reverse obesity. Although several
studies have reported that low-carbohydrate diets are
slightly better than low-fat diets to reduce body weight
over a period of about 4–6 months (Brehm, Seeley,
Daniels, & D’Alessio, 2003; Brehm et al., 2004; Foster et
al., 2003), the differences were not significant after a year
(Foster et al., 2003; Stern et al., 2004). Similarly, recent
‘‘low-glycemic’’ diets have been promoted as useful for
weight loss (Ludwig, 2003). It must be emphasized,
however, that other studies have failed to support that
low-carbohydrate diets (Astrup et al., 2004; Lean & Lara,
2004; Meckling, O’Sullivan, & Saari, 2004; Truby et al.,
2004) or low-glycemic diets (Sloth et al., 2004) are effective
for long-term maintenance of weight loss. Similarly,
although under certain circumstances access to sucrose,
separately from protein, can lead to over-consumption and
increased adiposity, this phenomenon appears to occur due
to a requirement to obtain sufficient protein and the effect
is not observed when protein concentrations are sufficiently
high (Kanarek, Aprille, Hirsch, Gualtiere, & Brown, 1987).
Certainly, many studies have demonstrated the beneficial
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effects of high-carbohydrate, low-fat diets (e.g., the
Mediterranean diet (Schroder, Marrugat, Vila, Covas, &
Elosua, 2004)) to reduce adiposity and other aspects of the
metabolic syndrome.

How do low carbohydrate diets promote obesity?

Considerable evidence supports that high-fat diets
produce obesity in part because they produce a more
metabolically efficient state (Surwit et al., 1995). Although
for some diets and genotypes, fats may also be more
palatable and therefore, increased caloric consumption
may also contribute to diet-induced obesity, high fat diets
can produce obesity even when consumed isocalorically
with low-fat diets (Surwit et al., 1995). For example,
matching caloric intake in rats on a high-fat vs. a low-fat
diet causes increased adiposity in the calorie-matched high-
fat group (Woods, Seeley, Rushing, D’Alessio, & Tso,
2003). It should be noted that the key observation that
diets of different compositions differ in their effect on
metabolic efficiency is not inconsistent with the laws of
thermodynamics (Feinman & Fine, 2004).

The reason that high-fat diets produce a more metabo-
lically efficient state may be that glucose produces more
post-prandial thermogenesis than fats (Westerterp, 2004).
Specifically, increasing plasma glucose either by infusion
(King, McMahon, & Almond, 1986) or ingestion
(Rothwell, Stock, & Warwick, 1983) increases metabolic
rate. However, per calorie, carbohydrates produce about
three-fold more thermogenesis than fat (Almind & Kahn,
2004; Westerterp, 2004). At least part of glucose-induced
thermogenesis is mediated by neuroendocrine mechanisms,
since infusion of glucose directly into either the third
ventricle or into the periphery produces similar enhance-
ment of metabolic rate (Le Feuvre, Woods, Stock, &
Rothwell, 1991), probably via activation of the sympathetic
nervous system whose sensitivity to glucose may play a role
in the development of obesity (de Jonge & Bray, 2002;
Landsberg & Krieger, 1989). Furthermore, 2-deoxyglucose
(2-DG) reduces temperature through effects on hypotha-
lamic neurons, apparently via the autonomic nervous
system (Shiraishi & Mager, 1980a, b). Similarly, infusion
of 2-DG into the ventromedial hypothalamus activates
peripheral autonomic responses (Borg, Sherwin, During,
Borg, & Shulman, 1995), and infusions of glucose into the
hypothalamus block autonomic responses to peripheral
hypoglycemia (Borg, Sherwin, Borg, Tamborlane, & Shul-
man, 1997).

Although acute effects of glucose on metabolic rate are
well-documented, to our knowledge only three studies, one
published (He, White, Edwards, & Martin, 1998) and two
unpublished from our laboratory, have addressed if
reduced glucose signaling leads to long-term increases in
adiposity. The published study (He et al., 1998) examined
the effect of infusing 5-thioglucose (5-TG) into the fourth
ventricle of rats for 14 days. When acutely infused into the
fourth ventricle or brainstem, 5-TG produces local
glucopenia leading to acute hyperphagia and other
neuroendocrine responses similar those produced by
2-DG or hypoglycemia (Ritter, Dinh, & Zhang, 2000;
Ritter, Slusser, & Stone, 1981). When infused for 14 days,
the effects to increase food intake are rapidly lost, similar
to the effects of repetitive exposure to 2-DG (Sanders &
Ritter, 2000). Nevertheless, chronic infusion of 5-TG
caused increased weight of the retroperitoneal and para-
metrial fat pad depots and increased adiposity as deter-
mined by body composition measurements. Similarly, we
have demonstrated that chronic 2-DG produces strikingly
increased adiposity in the nematode C. elegans without
increasing food intake (Yen & Mobbs, 2004). Finally, we
have demonstrated that mice lacking one allele of the
glucokinase gene, a key component of the hypothalamic
glucose-sensing mechanism (Dunn-Meynell, Routh, Kang,
Gaspers, & Levin, 2002; Yang, Kow, Funabashi, &
Mobbs, 1999; Yang, Kow, Pfaff, & Mobbs, 2004), become
more obese, and exhibit higher plasma leptin and insulin,
on a high-fat diet than wild-type controls, without
consuming more calories than controls (Yang, Mastaitis,
& Mobbs, 2004). Taken together, these studies support that
glucose signaling in the brain plays a key role in long-term
regulation of energy balance, mainly through a metabolic
rather than behavioral mechanism.

How do low carbohydrate diets reverse obesity?

Therefore, these studies predict that low-carbohydrate,
high-fat diets should produce obesity, rather than reverse
obesity. These considerations suggest that low-carbohy-
drate diets may facilitate weight loss in humans (when they
do) through psychological, social, or economic mechan-
isms that overcome the biochemical mechanisms mediating
high-fat-induced obesity. However, as described below,
ketogenic diets may activate other mechanisms. To address
this hypothesis, we assessed if an Atkins-type low-
carbohydrate (5% by calories), standard protein (20% by
calories), high-fat (76%) diet would promote weight loss in
mice made obese by a standard high-fat (45%), moderate
carbohydrate (35%) standard protein (20%) diet (Isoda,
Schwartz, Mohan, & Mobbs, 2004). For comparison,
another group of obese mice was placed on a high simple
carbohydrate (corn syrup, 75%) low fat (5%) diet. After
switching to the new diets, mice on the Atkins-type low-
carbohydrate diet continued to gain weight, whereas the
corn syrup diet produced a rapid restoration of body
weight (as well as all other aspects of metabolic control
such as insulin sensitivity) similar to that observed in chow
fed mice. Interestingly, mice on the corn syrup diet ate the
same number of calories as mice on the Atkins-type diet
(e.g., mice on the corn syrup diet actually ate more mass)
but the mice on the corn syrup diet nevertheless rapidly lost
weight whereas mice on the Atkins-type diet gained weight.
These observations suggest that a high simple carbohydrate
diet entails a higher average metabolic rate than a high-fat
diet, as had been previously suggested (Surwit et al., 1995).
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On the other hand, we observed that the very low-
carbohydrate diet (even when carbohydrate was reduced
almost to zero) did not significantly increase blood ketone
concentration, and produced only a modest effect to reduce
blood glucose. We hypothesized that the plasma glucose
was derived largely from gluconeogenesis due to the
relatively high concentration of amino acids in the diet. It
should be noted that the true ketogenic diet used clinically
to control epilepsy entails a much lower concentration of
protein (8% by calories) than is recommended for Atkins-
type diets (20%). When we reduced the protein concentra-
tion to 8% (still maintaining carbohydrate at only 5%),
adiposity was reversed as rapidly as occurred on the high-
sucrose diet. Interestingly, mice on the ketogenic diet
consumed the same number of calories as mice on the
Atkins-type diet, but rapidly lost weight anyway. This
comparison again suggests that metabolic efficiency plays a
key role in diet-induced obesity and its reversal by
ketogenic diets.

These studies clearly suggest that ketogenic diets
produce a less metabolically efficient state than high-fat
non-ketogenic diets, so if conditions can be produced
which enhance conversion of lipids to ketones, metabolic
rate per calorie is effectively increased, consistent with
previous reports that chronic infusion of ketones into the
brain reduce body weight (Davis, Wirtshafter, Asin, &
Brief, 1981). It should be noted, however, that the
ketogenic diet is no more effective than the high-sugar
diet in reversing diet-induced obesity. Nevertheless, it was
surprising that a ketogenic diet would be so effective in
reversing obesity in the presence of such high concentra-
tions of (metabolically efficient) fats.

We propose that ketones reverse obesity by counter-
acting the effect of a high-fat diet to impair glucose
metabolism (Atkins, 1998). We (Yang et al.,1999, 2004)
and others (Dunn-Meynell et al., 2002; Lee, Li, Xi, Suh, &
Martin, 2005) have previously demonstrated that hypotha-
lamic glucose-sensing neurons sense glucose through its
metabolism, similar to the glucose-sensing mechanism of
pancreatic beta cells (Newgard & McGarry, 1995). How-
ever, we (Yang et al., 1999, 2004), and others (Ainscow,
Mirshamsi, Tang, Ashford, & Rutter, 2002; Fioramonti,
Lorsignol, Taupignon, & Penicaud, 2004) have argued that
ATP is not the key metabolic signal in neuroendocrine
hypothalamic responses to glucose. Instead, we have
argued that the key metabolic signal is NADH (Yang et
al., 1999, 2004). Consistent with basic principles of
biochemistry (e.g., the lac operon), we also have evidence
from microarray studies that glucose induces glycolytic
capacity and inhibits beta oxidation whereas a high-fat diet
reduces glycolytic capacity and stimulates beta oxidation.
Since cytoplasmic NADH is a unique signature of
glycolysis (as opposed to ATP, which reflects both
glycolysis and beta oxidation), we hypothesize that
glucose-induced gene expression is mediated through
changes in NADH, not ATP. Lipids would be less efficient
at producing NADH, since beta oxidation produces
FADH2 instead of NADH. However, in contrast to beta
oxidation of lipids, the mitochondrial metabolism of
ketone bodies produces NADH, not FADH2. We, there-
fore, propose that high-fat non-ketogenic diets lead to
obesity because free fatty acids reduce glycolysis in glucose-
sensing hypothalamic neurons. We further propose that
ketogenic diets reverse obesity by preventing the inhibitory
effect of lipids on glycolysis, thus maintaining relatively
elevated post-prandial thermogenesis.
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