Recall: A set of vector $S = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\}$ in a vector space V forms a basis for V if both of the following hold:

(a) $\text{span } S = V$ (that is, the vector space V is spanned by the set S)
(b) S is a linearly independent set.

Examples:

1.

2.

3.

Definition: A vector space V is **finite dimensional** if there is a finite subset of V that is a basis for V. If no such subspace exists, then we say that V is **infinite dimensional**.

Note: If $S_1 = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\}$ is a basis for V, then $S_2 = \{c\vec{v}_1, c\vec{v}_2, \ldots, c\vec{v}_k\}$ for $c \neq 0$ is also a basis, so bases aren’t unique.

Theorem 4.8: If $S = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\}$ is a basis for a vector space V then every vector in V can be written in one and only one way as a linear combination of vectors in V.

Proof: Let $S = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\}$ be a basis for a vector space V and suppose $\vec{v} \in V$. Since S spans V, there is at least one way of expressing \vec{v} as a linear combination in S. Suppose that $\vec{v} = a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_k\vec{v}_k$ and $\vec{v}_1 = b_1\vec{v}_1 + b_2\vec{v}_2 + \cdots + b_k\vec{v}_k$. Then $0 = \vec{v} - \vec{v} = (a_1 - b_1)\vec{v}_1 + (a_2 - b_2)\vec{v}_2 + \cdots + (a_k - b_k)\vec{v}_k$. Since S is linearly independent, we must have $(a_1 - b_1) = (a_2 - b_2) = \cdots = (a_k - b_k) = 0$. That is, $a_i = b_i$ for all $i = 1 \cdots k$. □

Theorem 4.9: Let $S = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\}$ be a set of non-zero vectors in a vector space V and suppose $W = \text{span } S$. Then some subset of S is a basis for W.

Proof: First, notice that if S is linearly independent, then S is a basis for W.

Suppose that S is linearly dependent. Then, using Theorem 4.7, some vector v_j in S can be written as a linear combination of the other vectors in S. Hence, we may delete this vector from S to obtain a strictly smaller set S_1 that still spans W. If S_1 is linearly independent, then it is a basis for W. Otherwise, we may apply the same procedure to delete a vector from S_1. Since a single non-zero vectors is linearly independent and S is a finite set, repeating this procedure must eventually produce a basis for W.

Note: The proof of Theorem 4.9 suggests the following algorithm for finding a basis of a subspace W of a vector space V:

- **Step 0:** Begin with a set $S = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\}$ such that $\text{span } S = W$.

- **Step 1:** Consider the equation $a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_k\vec{v}_k = \vec{0}$. Solve this system for a_1, a_2, \ldots, a_k by representing this system as a matrix and applying the Gauss-Jordan method to put the augmented matrix into reduced row echelon form. If $a_1 = a_2 = \cdots = a_k = 0$, then S is already a basis.

- **Step 2:** If not, find a vector v_j that is a linear combination of the other vectors in S and delete it from the set S, obtaining a smaller set S_1.

- Repeat Steps 1 and 2 for the new set S_1. This process will eventually produce a basis for W.

Special Case: If \(V = \mathbb{R}^n \) or \(V = R_n \), then the following more efficient method can be used:

- **Step 0:** Begin with a set \(S = \{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_k\} \) such that \(\text{span} \ S = W \).

- **Step 1:** Consider the equation \(a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_k\vec{v}_k = \vec{0} \). Solve this system for \(a_1, a_2, \cdots, a_k \) by representing this system as a matrix and applying the Gauss-Jordan method to put the augmented matrix into reduced row echelon form.

- **Step 2:** The collection of vectors corresponding to the columns that contain a leading 1 form a basis for \(W \).

Theorem 4.10: If \(S = \{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n\} \) is a basis for a vector space \(V \), and \(T = \{\vec{w}_1, \vec{w}_2, \cdots, \vec{w}_r\} \) is a linearly independent set in \(V \), then \(r \leq n \)

Proof:

Corollary 4.1: If \(S = \{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n\} \) and \(T = \{\vec{w}_1, \vec{w}_2, \cdots, \vec{w}_m\} \) are bases for a vector space \(V \), then \(m = n \).

Proof: Applying Theorem 4.10 to \(S \) and \(T \), we have that \(m \leq n \). Reversing the roles of the two sets and applying Theorem 4.10 again, we have \(n \leq m \). Hence \(m = n \). \(\square \)

Notes: A single vector space \(V \) can have many different bases.

Definition: The **dimension** of a non-zero vector space \(V \) is the number of vectors in a basis for \(V \). This is well defined by Corollary 4.1. We denote this as: \(\text{dim} \ V \).

Note: By convention, \(\text{dim} \ \{\vec{0}\} = 0 \).

Examples:

- Both \(\mathbb{R}^n \) and \(R_n \) have dimension \(n \). (What is the dimension of \(M_{mn} \)?)
- \(P_n \) has dimension \(n + 1 \) (for example, since \(P_2 = \{p(t) : p(t) = at^2 + bt + c\} \), then \(\text{dim} \ P_2 = 3 \)).
- \(P \) is infinite dimensional.

Definition: Let \(S \) be a set of vectors in a vector space \(V \). A subset \(T \) of \(S \) is called a **maximal independent subset** of \(S \) if \(T \) is a linearly independent set of vectors that is not properly contained in any other linearly independent subset of \(S \). Similarly, a **minimal spanning set** of a vector space \(V \) is a set \(S \) of vectors that spans \(V \) and that does not contain any proper subset that spans \(V \).

Corollary 4.2: If \(\text{dim} \ V = n \), then any maximal independent subset of \(V \) contains \(n \) vectors.

Corollary 4.3: If a vector space \(V \) has dimension \(n \), then any minimal spanning set of \(V \) contains \(n \) vectors.

Corollary 4.4: If a vector space \(V \) has dimension \(n \), then any set of \(m > n \) vectors is linearly dependent.

Corollary 4.5: If a vector space \(V \) has dimension \(b \), then any set of \(m < n \) vectors does not span \(V \).