1. How many elements of unsaturation are present for a molecule with formula C₅H₅NO₂?
 a. 0
 b. 1
 c. 2
 d. 3
 e. 4
 f. 5

 Theory: 12 + 1 = 13
 Actual: \(\frac{5}{8H} \) short = 4 EU

2. Provide the proper IUPAC name for the alkene shown below.
 \((E)-3,6\text{-dimethylhept-2-ene} \)

3. Which of the following is correct for the geometry of the double bond shown below?
 a. E
 b. Z
 c. Neither E nor Z

4. Draw and all structural and stereoisomeric alkenes (no alkanes or cyclic compounds) with the formula C₄H₈. (stereoisomers included)

5. Choose the most stable alkene among the following. (may help to draw each of them out first…)
 a. 1-methylcyclohexene
 b. 3-methylcyclohexene
 c. 4-methylcyclohexene
 d. They are all of equal stability

6. a) Draw and circle the major alkene product that would result from the following reaction.
 b) In addition, draw any other minor isomers that would form, but don’t draw the same isomer twice.
7. a) Draw and circle the major alkene product for the following reaction. (There may be a lot of S_N2 product that forms as well, but you need not draw that.)
 b) In addition, draw any other minor isomers that would form, but don’t draw the same isomer twice.

 ![Reaction diagram](image)

8. a) Draw and circle the major alkene product for the reaction shown. (There may be some S_N1 product that forms as well, but you need not draw that.)
 b) In addition, draw any other minor isomers that would form, but don’t draw the same isomer twice.
 c) Draw a detailed, step-by-step mechanism for the pathway to the major product.

 ![Reaction diagram](image)

9. Provide the chemicals necessary for transforming 2-methylheptane (A) into 2-methyl-1-heptene (C), and draw the structure for the chemical B which you can make from A and which serves as a precursor to C. Above the arrows write in recipes for the A \rightarrow B transformation and for the B \rightarrow C transformation.

 ![Reaction diagram](image)
For each of the following reactions, write whether the mechanism would be radical, cationic, or anionic?

1. \[\text{HNO}_3 \rightarrow \text{HNO}_2 \]
 Cationic (The H+ is the active ion. Nitrate does nothing.)

2. \[\text{Br}_2, \text{NaOH} \rightarrow \text{Br}_2 \]
 Anionic. The hydroxide is the active ion, sodium cation is spectator.

3. \[\text{H}_3\text{CHO}, \text{H}^+ \rightarrow \text{H}_3\text{CO} \]
 Cationic. H+

4. \[\text{Br}_2, \text{peroxides} \rightarrow \text{Br} \]
 Radical. Peroxides or hv is clue.

5. \[\text{O} \rightarrow \text{O} \]
 Anionic. The hydroxide is the active ion, sodium cation is spectator. Br2 without hv or peroxides does NOT by itself cause radical chemistry.

6. \[\text{H}_2\text{O}, \text{H}^+ \rightarrow \text{OH}_2 \]
 Cationic. H+

7. \[\text{peroxides} \rightarrow \text{etc} \]
 Radical. Peroxides is clue.

8. \[\text{H}_2\text{CO}, \text{OCH}_3 \rightarrow \text{H}_2\text{O}, \text{H}^+ \]
 Cationic

9. \[\text{O} \rightarrow \text{OLi} \]
 Anionic. CH3 anion is active, highly unstable anion. Lithium cation is a metal cation, which serves as a do-nothing spectator.
Draw the arrow(s) for each of these steps.

1. $\text{OH} \xrightarrow{\text{H}^+} \text{HO}_2$

2. $\text{HO}_2 \rightarrow \text{+ H}_2\text{O}$

3. $\text{H} \xrightarrow{\text{H}_2\text{O}} \text{+ H}_3\text{O}^+$

4. $\text{Ph} + \text{Br} \rightarrow \text{Ph} \text{+ Br}^-$

5. $\text{Ph} + \text{OH} \rightarrow \text{Ph} \text{+ Br}^-$

6. $\text{Ph} + \text{D-Br} \rightarrow \text{Ph} \text{+ Br}^-$

7. $\text{Ph} \text{+ Br}^- \rightarrow \text{PhD}$

8. $\text{O} \xrightarrow{\text{CH}_3} \text{OCH}_3$

9. $\text{O} \xrightarrow{\text{OCH}_3} \text{OCH}_3$

10. $\text{Ph} \xrightarrow{\text{Br-Cl}} \text{Ph} \text{+ Cl}^- \rightarrow \text{PhCl}$

11. $\text{Br} \xrightarrow{\text{NEt}_3} \text{+ H-NEt}_3 \text{+ Br}^-$