Math 335 — Test 4 Review Sheet

The exam covers Sections 4.9, 5.1–5.5.

- 1. Distributions:
 - (a) Multinomial (discrete)
 - Context: Generalization of binomial when there are more than two possible outcomes.
 - Must be independent trials
 - $f(x_1, x_2, \dots, x_k)$ = $\frac{n!}{x_1! x_2! \cdots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$ where $x_1 + x_2 + \dots + x_k = n$ and $p_1 + p_2 + \dots + p_k = 1$
 - (b) Standard normal (continuous)
 - density $f(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$
 - distribution $F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{\frac{-t^2}{2}} dt$
 - $\mu = 0, \, \sigma = 1$
 - Table 3
 - Be able to use symmetry properties to find probabilities not given directly by Table 3.
 - Bell-shaped curve, centered at $\mu = 0$
 - Be able to find z_α, which is the z-score for which the upper tail has probability α.
 - (c) Normal (continuous)
 - density $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

• distribution

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-(t-\mu)^2}{2\sigma^2}} dt$$

- mean is μ , standard deviation is σ
- Be able to convert to a z-score $z = \frac{x \mu}{\sigma}$
- Bell-shaped curve, centered at μ

(d) Uniform (continuous)

•
$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } \alpha < x < \beta \\ 0 & \text{elsewhere} \end{cases}$$

• $\mu = \frac{\alpha + \beta}{2}$
• $\sigma = \frac{\beta - \alpha}{\sqrt{12}}$

- 2. Continuous versus discrete probability distributions
- 3. For continuous distributions:
 - (a) f is probability density function, does not give the probabilities
 - (b) F is the cumulative probability distribution, does give the probabilities

(c) Need
$$\int_{-\infty}^{\infty} f(x)dx = 1$$

(d) $F(x) = \int_{-\infty}^{x} f(t)dt$
(e) $P(X \le a) = \int_{-\infty}^{a} f(t)dt = F(a)$
(f) $P(a \le X \le b) = \int_{a}^{b} f(t)dt = F(b) - F(a)$
(g) Mean $\mu = \int_{-\infty}^{\infty} xf(x)dx$
(h) $\mu'_{2} = \int_{-\infty}^{\infty} x^{2}f(x)dx$
(i) Variance $\sigma^{2} = \mu'_{2} - \mu^{2}$ or
 $\sigma^{2} = \int_{-\infty}^{\infty} (x - \mu)^{2}f(x)dx$

- 4. Normal approximation to the Binomial
 - Rule of thumb is: np > 15 and n(1-p) > 15
 - $\mu = np$ • $\sigma = \sqrt{np(1-p)}$