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Origin of the conjecture.

First formulated by O. Keller in 1939.

Hartshorne’s Exercise 3.19 (b).

It is one of the 18 Smale’s problems.

Still unproven?
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Polynomial maps and their Jacobian

Base field C.

Polynomial map

F = (F1, . . . ,Fn) : Cn → Cn

z = (z1, . . . , zn) 7→ (F1(z), . . . ,Fn(z))

Jacobian

JF (z) =


∂F1
∂z1

(z) . . . ∂F1
∂zn

(z)
...

. . .
...

∂Fn
∂z1

(z) . . . ∂Fn
∂zn

(z)
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Invertible polynomial maps

Theorem

If F : Cn → Cn is invertible (and its inverse is a polynomial map)
then

|JF (z)| ∈ C∗

(the determinant of JF (z) is a nonzero constant)

Proof: Let G : Cn → Cn be the inverse of F . We must have that
the compositions F ◦ G and G ◦ F are the identity maps. By
applying the chain rule, we get

JG◦F (z) = JG (F (z)) · JF (z) = In

In particular, for every z , the determinant |JF (z)| must be
different from 0.
We conclude by observing that JF (z) is a polynomial and C is
algebraically closed.
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The Jacobian conjecture

Conjecture

Let F : Cn → Cn be a polynomial map such that

|JF (z)| ∈ C∗

then
F is invertible (and its inverse is a polynomial map).

Still open for n ≥ 2!!!

More generally

Instead of C, we can consider any algebraically closed field k with
characteristic 0.
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The case n = 1

The conjecture is true for n = 1

The map is a polynomial F (z), such that

∂F

∂z
(z) = a 6= 0

Therefore

F (z) = az + b with a 6= 0

the inverse is G (z) = z−b
a
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An example for n = 2

We define

F : C2 → C2

(z1, z2) 7→
(
z1 + (z1 + z2)3, z2 − (z1 + z2)3

)
We have (Exercise):

the determinant of JF (z1, z2) is 1

the inverse of F is

G : C2 → C2

(z1, z2) 7→
(
z1 − (z1 + z2)3, z2 + (z1 + z2)3

)
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Linear Case

Definition

deg(F ) = maxi deg(Fi )

Up to replacing F (z) with F (z)− F (0), we can assume

F (0) = 0

and we consider the decomposition in homogenous components

F = F (1) + · · ·+ F (d)

Theorem (Linear Algebra)

If deg(F ) = 1 then the Jacobian conjecture is true.
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Reduction to injectivity

A. Bia lynicki-Birula, M. Rosenlicht (1962)

Let F : Cn → Cn be a polynomial map. If F is injective, then F is
surjective.

S. Cynk, K. Rusek (1991)

If F : Cn → Cn is a bijective polynomial map, then the inverse of
F is a polynomial map.

therefore the Jacobian conjecture reduces to prove that the
polynomial map is injective

More generally

Cynk and Rusek proved that if V is an affine algebraic set over an
algebraically closed field k of characteristic 0 and F : V → V is an
injective endomorphism, then F is an automorphism.
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Quadratic case

First proved by S. Wang in 1980

1 Let us suppose that deg F ≤ 2 and |JF (z)| ∈ C∗

2 Suppose that F (a) = F (b) for some a 6= b

Replace F (z) with F (z + a)− F (a) and consider c = b − a,
we may assume

F (0) = 0

F (c) = 0 for some c 6= 0

Let us write
F (z) = F (1)(z) + F (2)(z)

We have, for all t ∈ C,

F (tc) = tF (1)(c) + t2F (2)(c)
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Quadratic case

1 Let us suppose that deg F ≤ 2 and |JF (z)| ∈ C∗

2 Suppose that F (c) = F (0) = 0 for some c 6= 0

We differentiate and we get, for all t ∈ C,

∂

∂t
F (tc) = F (1)(c) + 2tF (2)(c) = JF (tc) · c 6= 0

in particular, when t = 1
2 ,

F (c) = F (1)(c) + F (2)(c) = JF

(
1

2
c

)
· c 6= 0

contradiction.
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Counter-example with analytic functions

Consider

F : C → C
z 7→ ez

We have

JF (z) = ez 6= 0

F is not injective, because, over C, the function ez is periodic
with period 2πi .
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Counter-example with real numbers

Consider

f : R → R
x 7→ x3 + x

We have

Jf (x) = f ′(x) = 3x2 + 1 6= 0 for all x , since we are on R
f (x) is bijective

the inverse of f (x) cannot be a polynomial (exercise)
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Simplifying the linear part

Fact

We can reduce to the case

F (z) = In · z + F (2)(z) + · · ·+ F (d)(z)

Proof Let us write

F (z) = F (1)(z) + F (2)(z) + · · ·+ F (d)(z)

We have

JF (z) = JF (1) + JF (2)(z) + · · ·+ JF (d)(z)

In particular
JF (0) = JF (1)

and since the determinant of the Jacobian is supposed to be a
constant

|JF (z)| = |JF (1) |

Damiano Fulghesu An introduction to the Jacobian conjecture



Simplifying the linear part

Fact

We can reduce to the case

F (z) = In · z + F (2)(z) + · · ·+ F (d)(z)

Proof Let us write

F (z) = F (1)(z) + F (2)(z) + · · ·+ F (d)(z)

We have

JF (z) = JF (1) + JF (2)(z) + · · ·+ JF (d)(z)

In particular
JF (0) = JF (1)

and since the determinant of the Jacobian is supposed to be a
constant

|JF (z)| = |JF (1) |

Damiano Fulghesu An introduction to the Jacobian conjecture



Simplifying the linear part

Fact

We can reduce to the case

F (z) = In · z + F (2)(z) + · · ·+ F (d)(z)

Proof Let us write

F (z) = F (1)(z) + F (2)(z) + · · ·+ F (d)(z)

We have

JF (z) = JF (1) + JF (2)(z) + · · ·+ JF (d)(z)

In particular
JF (0) = JF (1)

and since the determinant of the Jacobian is supposed to be a
constant

|JF (z)| = |JF (1) |

Damiano Fulghesu An introduction to the Jacobian conjecture



Simplifying the linear part

Fact

We can reduce to the case

F (z) = In · z + F (2)(z) + · · ·+ F (d)(z)

Proof Let us write

F (z) = F (1)(z) + F (2)(z) + · · ·+ F (d)(z)

We have

JF (z) = JF (1) + JF (2)(z) + · · ·+ JF (d)(z)

In particular
JF (0) = JF (1)

and since the determinant of the Jacobian is supposed to be a
constant

|JF (z)| = |JF (1) |

Damiano Fulghesu An introduction to the Jacobian conjecture



Simplifying the linear part

Fact

We can reduce to the case

F (z) = In · z + F (2)(z) + · · ·+ F (d)(z)

Proof Let us write

F (z) = F (1)(z) + F (2)(z) + · · ·+ F (d)(z)

We have

JF (z) = JF (1) + JF (2)(z) + · · ·+ JF (d)(z)

In particular
JF (0) = JF (1)

and since the determinant of the Jacobian is supposed to be a
constant

|JF (z)| = |JF (1) |

Damiano Fulghesu An introduction to the Jacobian conjecture



Simplifying the linear part

Fact

We can reduce to the case

F (z) = In · z + F (2)(z) + · · ·+ F (d)(z)

Proof Let us write

F (z) = F (1)(z) + F (2)(z) + · · ·+ F (d)(z)

We have

JF (z) = JF (1) + JF (2)(z) + · · ·+ JF (d)(z)

In particular
JF (0) = JF (1)

and since the determinant of the Jacobian is supposed to be a
constant

|JF (z)| = |JF (1) |

Damiano Fulghesu An introduction to the Jacobian conjecture



Simplifying the linear part

Fact

We can reduce to the case

F (z) = In · z + F (2)(z) + · · ·+ F (d)(z)

In particular we have that the matrix JF (1) is invertible

After a linear change of coordinates we can assume

JF (1) = In

Damiano Fulghesu An introduction to the Jacobian conjecture



Simplifying the linear part

Fact

We can reduce to the case

F (z) = In · z + F (2)(z) + · · ·+ F (d)(z)

In particular we have that the matrix JF (1) is invertible

After a linear change of coordinates we can assume

JF (1) = In

Damiano Fulghesu An introduction to the Jacobian conjecture



Reduction of degree

A. Yagzhev (1980); H. Bass, E. Connell, D. Wright (1982)

If the Jacobian conjecture holds for all n ≥ 2 and all F : Cn → Cn

of the form
F = In + F (3)

then the Jacobian conjecture holds.

Warning

This does not mean, for example, that if we prove the conjecture
for F = In + F (3) in the case n = 2, then we have proved the
conjecture for the case n = 2.

M. de Bondt, A. van den Essen (2005)

If the Jacobian conjecture holds for all F = In + F (3) such that JF
is symmetric, then the Jacobian conjecture holds.
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Reduction of degree

L.M. Drużkowski (1983)

If the Jacobian conjecture holds for all n ≥ 2 and all F : Cn → Cn

of the form

F (z) = In · z +

( n∑
k=1

ak,1zk

)3

, . . . ,

(
n∑

k=1

ak,nzk

)3


then the Jacobian conjecture holds.

E. Hubbers (1994)

The Jacobian conjecture holds for all F of the Drużkowski form if
n ≤ 7.

M. de Bondt, A. van den Essen (2005)

The Jacobian conjecture holds for all F of the Drużkowski form
such that JF is symmetric.
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Other results

D. Wright (1993) Jacobian conjecture holds for n = 3 and
F = In + F (3)

E. Hubbers (1994) Jacobian conjecture holds for n = 4 and
F = In + F (3)

T. Moh (1983) Jacobian conjecture holds for n = 2 and
d ≤ 100

L. Wang (2005) found more exceptional cases than Moh and
confirmed the theorem

M. Razar (1979) Jacobian conjecture holds for n = 2 if the all
the fibers of F1 or F2 are irreducible rational curves
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Thank you!
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