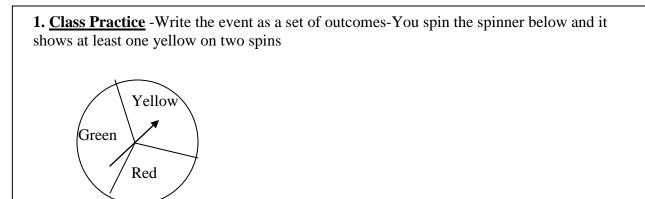
The Basics of Probability Theory

The objectives for this section include:

- 1. Calculate probabilities by counting outcomes in a sample space.
- 2. Use counting formulas to compute probabilities.
- 3. Understand how probability theory is used in genetics.


Probability describes the predictable long-run patterns of random outcomes. For instance, if you toss a fair coin **a single time**, the outcome (heads or tails) is completely random and unpredictable.

Experiment: is any observation of a random phenomenon.

Outcome: what happens when the experiment is performed. The outcomes for

Sample Space: the set of all possible outcomes.

Event: a subset of the sample space, sometimes referred to as the **Target outcome.** It is the set that includes only the desired (target) outcomes.

Theoretical probability does not rely on doing the experiment, but they do require equally likely outcomes. If E is an event in a sample space S with all equally likely outcomes, then the probability of E is given by the formula below.

Probability (E) =		Number of ways of obtaining the event
	<i>n</i> (S)	The size of the sample space

2. <u>Class Practice</u> – What is the probability of the following: (Write your answer as a fraction in simplest terms)

a. What is the probability of getting exactly one head on three coins?

Hint: If possible list the sample space

 c. What is the probability of draw deck of cards? 3. <u>Class Practice</u> –If you toss expect to get heads? 	a fair coin 24,	,000 times, ho	w many times we	
			-	ould you
Around 1900, an English statistic got 12,012 heads.	cal named Karl	l Pearson did to	oss a coin 24,000) times. He
Write this probability as a fraction exact, but often the decimal and p		-		on will be
Simplified 1	Fraction	Rounded De	ecimal Round	led Percent
12,012 out of 24,000 =		≈	~	

Empirical/Experimental Probability: reports the <u>actual outcomes</u> of a probability experiment. Probability can be reported as a fraction, a decimal or a percent.

Probability (event) = $\frac{\text{number of times } E \text{ occurs}}{\text{total number of times the experiment is performed}}$

Complete Quiz Yourself 2 on p. 724	

Basic Properties of Probability where S is the sample space for some experiment and E is an event in S.

1. $\leq P(E) \leq$

$$2. \quad P(\phi) =$$

3. P(S) =

Complete Quiz Yourself (3) on p. 727

The odds in favor of an event are the number of favorable: number of unfavorable

Ex. The odds in favor of rolling a 2 on a standard die are 1:5

The odds against an event are the number of unfavorable: number of favorable.

Ex. The odds against rolling a 2 on a standard die are 5:1

4. Class Practice

- a. If the probability of Professor Harms winning the Halloween race are 12% what are the odds in favor of him winning the race?
- b. If the odds against Angie winning the race are 20:3 what is the probability the she will win the race?

Assignment: Read pp. 720-733, Finish Guided Notes Complete #5, 6, 9, 11, 15, 19, 21, 29, 31, 32, 41, 44, 47, 61, 67, 69 on pp. 733-735