The objectives for this section include:

- 1. Write arguments symbolically.
- 2. Determine when arguments are valid or invalid
- 3. Recognize form of standards arguments.
- 4. Recognize common fallacies.

An argument is a series of statements cal	led followed by a single			
statement called the	. An argument is valid whenever it is a			
tautology (The final values in the truth table are all true).				

Steps to verify an argument using a truth table:

- 1) Write the argument symbolically.
- 2) Join the premises together using the AND connective.
- 3) Form a conditional statement using the conjunction from step 2 as the hypothesis and the conclusion of the argument as the conclusion of the conditional.
- 4) If the statement you form in step 3 is a tautology, then the argument is valid.

Class Practice	
If you love me, then you will do everything I ask.	
You do not do everything I ask.	
Therefore, you do not love me.	

Method I -Use a Truth table to determine if the argument is valid

p	\boldsymbol{q}	
Т	Т	
Т	F	
F	T	
F	F	

This is a argumen

Valid Arguments

Law of Detachment	Law of Contraposition	Law of Syllogism	Disjunctive Syllogism
	•		· ·
$p \rightarrow q$	$p \rightarrow q$	$p \rightarrow q$	$p \vee q$
<u>p</u>	<u>~</u> q	$_q o _r$	<u>~</u> p
$\therefore q$	∴ ~p	$\therefore p \rightarrow r$	$\therefore q$
		1	
The statement <i>p</i> allows us	This is the	Transitive property of	In $p \lor q$, if we don't
to detach q from $p \rightarrow q$	Contrapositive of $p \rightarrow q$	numbers if $a = b$ and	have p , then we must
		b = c, then $a = c$.	have q .

<u>Class Practice</u> - Identify the form and state whether the argument is valid.

If Sept. 26th is Monday, then Sept. 27th is Tuesday.

If Sept. 27th is Tuesday, then Sept. 28th is Wednesday.

Therefore, if Sept. 26th is Monday, then Sept. 28th is Wednesday.

Invalid Arguments

,		
Fallacy of the Converse	Fallacy of the Inverse	
$p \rightarrow q$	$p \rightarrow q$	
q	~p	
∴ <i>p</i>	∴ ~ <i>q</i>	
If we have the second	If we have the second	
premise q , then we	premise $\sim p$, then we	
conclude p , which is the	conclude $\sim q$, which is	
converse of $p \rightarrow q$.	the inverse of $p \rightarrow q$.	

<u>Class Practice - Identify</u> the form and state whether the argument is valid.

If Erica gets a pay raise, then she will be able to afford DSL.

Erica got DSL

Therefore, she got pay raise.

Assignment due for 9/26

Complete #1, 3, 4, 7, 9, 13, 15, 17, 27, 28, 35 on pp. 116-119