
Section 3.3 The Conditional and Biconditional *Read pp. 102-108*

The objectives for this section include:

- 1. Compute truth tables for conditionals and biconditionals.
- 2. Write the converse, inverse, and contrapositive of a conditional.
- 3. Use alternative words to write conditionals.
- 4. Identify equivalent forms of the conditionals.

Biconditional a conditional that must be true both ways (original and converse result in both true)

P	Q	$P \rightarrow Q \land Q \rightarrow P$	$P \leftrightarrow Q$
T	T		
T	F		
F	T		
F	F		

Biconditional is true only when

1) Class Practice

p	q	$(p \land q) \rightarrow (\sim p \lor q)$
Т	T	
T	F	
F	Т	
F	F	

Tautology is a statement that is always true so that when a truth tables' final column is completed it is all TRUES.

2. Class Practice

Assume that p represents a false statement, q is a true statement, and r is a false statement. Determine the truth value of each statement.

a.
$$\sim (p \lor q) \rightarrow q$$

b.
$$(p \land q) \leftrightarrow \sim r$$

3. Class Practice

p	\boldsymbol{q}	$(p \lor q) \rightarrow \sim q$
T	T	
T	F	
F	T	
F	F	

Name	Symbols
Converse	$q \rightarrow p$
Inverse	~p → ~q
Contrapositive	~q →~p

The conditional statement $p \rightarrow q$ has the following:

Converse- A conman does a switch

Inverse is the opposite, the additive inverse of 5 is -5

Contrapositive does both switch and take the opposite.

4. Class Practice-Write in words the converse, inverse, and contrapositive		
If know the material, then you will do well in the course.		
Converse		
Inverse		
Contrapositve		

Complete	Quiz	Yourself	10 c	on p. 105
----------	------	----------	-------------	-----------

If the price of downloading videos increases, then people will copy them illegally.

5. Class Practice	Given statement	Rewritten in ifthen form
When if is located half way	Today is Wednesday if you	
in a statement often the	have confirmation.	
then is not part of the		
original sentence. It can be		
rewritten with if starting		
your sentence as that is		
your hypothesis.		
The <i>only if</i> \neq <i>if</i> as the <i>only</i>	I will go to school only if I	
if is the condition which is	have class.	
first part of the sentence		
forming the conclusion.		
p is sufficient for q with the	To live in Minnesota, it is	
sufficient condition being	sufficient to live in	
the hypothesis.	Moorhead.	
q is necessary for p with	To graduate from MSUM, it	
the necessary condition	is necessary to complete a	
being the conclusion.	Math course.	