Verifying Arguments

The objectives for this section include:

- 1. Write arguments symbolically.
- 2. Determine when arguments are valid or invalid
- 3. Recognize form of standards arguments.
- 4. Recognize common fallacies.

An argument is a series of statements called ______ followed by a single

statement called the ______. An argument is valid whenever it is a

tautology (The final values in the truth table are all true).

Steps to verify an argument using a truth table:

- 1) Write the argument symbolically.
- 2) Join the premises together using the AND connective.
- 3) Form a conditional statement using the conjunction from step 2 as the hypothesis and the conclusion of the argument as the conclusion of the conditional.
- 4) If the statement you form in step 3 is a tautology, then the argument is valid.

Class Practice

If you love me, then you will do everything I ask.

You do not do everything I ask.

Therefore, you do not love me.

Method I -Use a Truth table to determine if the argument is valid

р	q	
Т	Т	
Т	F	
F	Т	
F	F	

This is a ______ argument

MSUM Liberal Studies Course MA 102– Spring 2010 Guided Notes to Accompany Text: *Mathematics All Around* by Pirnot

Valid Arguments

Law of Detachment	Law of Contraposition	Law of Syllogism	Disjunctive Syllogism
$p \rightarrow q$	$p \rightarrow q$	$p \rightarrow q$ $a \rightarrow r$	$p \lor q$
$\begin{array}{c} p \\ \vdots q \end{array}$	$-\underline{\neg q} - \underline{\neg} q - \underline{\neg} q - \underline{\neg} p$	$\underline{-q}_{-} \xrightarrow{\rightarrow} \underline{r}_{-}$ $\therefore p \rightarrow r$	$-\underline{-p}_{-}$
The statement p allows us		Transitive property of numbers if $a = b$ and	In $p \lor q$, if we don't have p , then we must
to detach q from $p \rightarrow q$	Contrapositive of $p \rightarrow q$	b = c, then $a = c$.	have p , then we must have q .

<u>Class Practice</u> - Identify the form and state whether the argument is valid.

If Sept. 25th is Monday, then Sept. 26th is Tuesday.

If Sept. 26th is Tuesday, then Sept. 27th is Wednesday.

Therefore, if Sept. 25th is Monday, then Sept. 27th is Wednesday.

Invalid Arguments

Fallacy of the Converse	Fallacy of the Inverse	
$p \rightarrow q$	$p \rightarrow q$	
q	<u>~</u> p	
$\therefore p$	∴ ~q	
If we have the second	If we have the second	
premise q , then we	premise ~ <i>p</i> , then we	
conclude p , which is the	conclude $\sim q$, which is	
converse of $p \rightarrow q$.	the inverse of $p \rightarrow q$.	

<u>Class Practice -</u> Identify the form and state whether the argument is valid.

If Erica gets a pay raise, then she will be able to afford DSL.

Erica got DSL

Therefore, she got pay raise.

Assignment for 2/17 Read pp. 114-119 Complete #1, 3, 4, 11, 13, 14, 15, 17, 19, 31, 32, 39 on pp. 120-121 & Additional Handout on 2.5(Part 1) MSUM Liberal Studies Course MA 102- Spring 2010 Guided Notes to Accompany Text: *Mathematics All Around* by Pirnot