110 Final Exam Review Sample problems from unit 1 (ch 6 algebra), unit 2 (ch 2 sets), and unit 3 (ch 12 counting and probability). New material from sections 6.5 and 6.8 has not been included, nor material from unit 4 (ch 13 statistics). 1. Simplify: a. $$\frac{20}{3} \div \frac{5}{6}$$ b. $$3^2 + 5(-2) - (-4)$$ $$9 - 10 + 4 = 3$$ c. $$3-4[2x-3(x-2)]$$ $3-4[2x-3(x-2)]$ $3-4[-x+6]$ $3+4x-24=4x-21$ d. $$\left(\frac{3}{4}x^3 - x^2 + \frac{3}{8}\right) - \left(\frac{1}{4}x^2 - 2x + \frac{1}{8}\right)$$ 2. Solve P = 2l + 2w for w. $$\frac{P-2l=\frac{2}{2}w}{2}$$ $$w=\frac{P-2l}{2}\text{ or }w=\frac{P}{2}-l$$ 3. Solve: a. $$3x + \frac{3}{4} = \frac{1}{2} + x$$ $$4\left(\frac{x+99}{4}\right) = (37).4$$ $$x+99 = 148$$ c. Solve for h if $$A = \frac{h(b_1 + b_2)}{2}$$ 2. $$A = h(b_1+b_2)_{-2}$$ $$\frac{2A}{b_1+b_2} = h(b_1+b_2)_{-b_1+b_2}$$ 4. The length of a room is 3 times the width. The perimeter is 80 feet. Find the length and width of the room width= $$X$$ length= $3X$ $P=2x+2(3x)$ $$P = 2 \times + 2(3 \times)$$ $$80 = 2 \times + 6 \times$$ $$80 = 86 = 3 \times = 10^{50} \text{ wights 70ft}$$ $$6. \text{ Solve. } 7 - \frac{3}{4}x < 13$$ $$-7 - 7$$ 5. If a customer is charged \$190.19 for an item where the sales tax rate is 4.5%, what was the Let X = original price $$X + 0.045 \times = 190.19$$ $$\frac{1.045 \times = 190.19}{1.045}$$ $$X = 183$$ 7. A syllabus gives the following weights for the final grade: midterm: 20%, final exam: 50%, quizzes: 30%. Toby received a score of 70 on the midterm, but only has an average of 20 on quizzes. What does Toby need to achieve on the final to get at least a C in the course? get at least a C in the course? $$0.2(70) + 0.5(x) + 0.3(20)^{2} + 0.5(x) + 0.5(x) + 0.5(x) = 70$$ $0.5(x) + 0.5(x) + 0.5(x) = 70$ $0.5(x) + 0.5(x) = 70$ $0.5(x) -3). $$M = \frac{7 - (-3)}{-2 - 3} = \frac{10}{5} = -2$$ 10. The table at right gives several points on the graph of a line. Which of the following points will also be on the graph of the line? a. $$(3,-7)$$ b. $(-3,9)$ c. $(4,-3)$ d. $(-4,21)$ 9. Find the slope, x-intercept, and y-intercept of $2x - 5y = 10. \Rightarrow -5y = -2x + 10 \Rightarrow y - \frac{7}{5}x - 2$ x-intercept: (5,0) y-intercept: (0,-2)slope(5 $$2x - 5(0) = 10$$ $$2(0) - 5y = 10$$ $$x = 5$$ $$y = -2$$ $$\begin{array}{ccc} \frac{x & y}{-2 & 13} \\ -1 & 9 \\ 0 & 5 \\ -4 \end{array}$$ 11. Elliot buys a new forklift for his business. It will cost \$140,000 and will decrease in value each year. The graph shows the value of the forklift after the first 6 years of ownership. a. How much is the forklift worth after 1 year? \$120,000 b. After how many years is the forklift worth \$60,000? c. Find the equation of this line where V is the value after t years. $\sqrt{=-20,000} + 140,000$ e. Find the y-intercept. Interpret in this context. \$\frac{1}{40,000}\$ is the amount of depreciation in \$\frac{\pi}{y}\$. \$\frac{1}{40,000}\$ is the organal loss of the forklift. 12. With a flat fee of \$50 plus the hourly cost to rent a garden tractor, the 6 hour cost was \$200. If the cost to rent the garden tractor is modeled by an equation of the form y = mx + b, where y equals the total cost and x equals the number of hours, m represents a. \$200 b. fixed cost 450c. rate of change in cost 450 450 13. Let f(x) = 3x + 5 and $g(x) = x^2 - 4x$. Evaluate the following: a. f(-4) = 3(-4) + 5 b. $g(-3) = (-3)^2 - 4(-3)$ a. f(-4) = 3(-4) + 5 $$\int_{1-4}^{1} (-4) = -12 + 5$$ $$\int_{1-4}^{1} (-4) = -7$$ b. $$g(-3) = (-3)^2 - 4($$ $$g(-3) = 9 + 12$$ $$g(-3) = 21$$ 14. Which of the following functions represent the input x and output f(x) from the tables of values at right? Write the letter of the matching function for each table. A. $$f(x) = x^2 - 5x + 4$$ B. $f(x) = 4 - x^2$ C. $f(x) = (x - 4)^2$ A. $f(x) = 4^x$ E. $f(x) = 4^{1-x}$ G. $f(x) = 4^{x-1}$ 1. The following table shows the earned degrees in the U.S. in the 2005-2006 academic year, classified by level and by the gender of the degree recipient. A person is chosen at random. | | Bachelor's | Master's | Professional | Doctorate | Total | |-------|------------|----------|---------------------|-----------|-------| | Femal | le 855 | 356 | 44 | 27 | 1282 | | Male | 631 | 238 | 44 | 29 | 942 | | | 1486 | 594 | 88 | 56 | 2224 | b. Find the probability that the degree recipient is male. $P(Mal_s) = \frac{942}{2224} = \frac{471}{1112}$ c. Find the probability that the person is male and received a bachelor's degree. P(MdB)= d. Find the probability that the person is male or received a bachelor's degree. $p(M \otimes B) = \frac{942 + 1486 - 631}{22244}$ e. If the degree recipient is female, find the probability that she received a professional degree. f. If the person received a master's degree, find the probability that the degree recipient is female. g. Find the probability that a person received a professional or doctorate degree. $$P(PUD) = \frac{88156}{2224} = \frac{144}{2224} = \begin{pmatrix} 9 \\ 139 \end{pmatrix}$$ 2.a. Six pieces of paper are numbered 1,2,3,4,5,6. Three papers are drawn at random, without replacement. a. Find the probability that a 1 is drawn first, a 4 second, and a 6 third. and a 6 third. $$\frac{1}{6} \cdot \frac{1}{5} \cdot \frac{1}{4} = 120$$ b. Find the probability that two even numbers and one odd number is drawn. c. How many outcomes would have a sum greater 3. A consumer research survey asked about preferences regarding drinking plain bottle water or a sports drink. The sample included 200 men and 200 women. 280 reported they preferred plain bottled water. Of the group preferring a sports drink, 80 were male and 40 were female. a. Organize the information using a Venn diagram. Let F represent the person was female and S represent the person chose sports drinks. c. Find the probability a person in the study preferred plain bottled water. $\frac{160+120}{400} = \frac{7}{10}$ d. Find the probability a person in the study preferred a sports drink. $\frac{120}{400} = \left(\frac{3}{10}\right)$ e. If the consumer is a man, what is the probability that he will prefer bottled water? 200 f. If the consumer preferred bottled water, what is the probability that the consumer is female? $\frac{160}{280} = \frac{4}{7}$ v. payer 1924, ves a ski ymer, of 300 produces. Unknown to 1906 over 19. Luly meal contains aix defecti If the time. Find the probability that a sample of her products of the light in two declerities. a) 2. 2 or 6.02 x 0.02 | | to a see math majors | |---|--| | 5. Set up only; do not simplify nor compute. For a student club with twenty mer | nbers, ten are main majors | | | 18.17.16 | | and five are business majors. a. How many ways can five members be chosen to go to a conference? a. How many ways can five members be chosen to go to a conference? | m 2 6 5 1 | | b. Find the probability that three math majors and two datasets for the conference | 一点, 市市市市门 | | a. How many ways can five members be chosen to go to a conference: b. Find the probability that three math majors and two business majors are chosen for the conference. c. Find the probability that all five business majors are chosen for the conference. | E 3 2 1 | | To the machinity that at least one pushess majory is successful. | 9 18 17 16 | | d. Find the probability that at $\frac{1}{20} = \frac{14}{19} \cdot \frac{13}{18} \cdot \frac{12}{17} \cdot \frac{14}{16}$ | | | - + (no business) - 1 (20 /9 /6 /7 /6) | | | | 1 | | * 6. A consumer watch group test three brands (A, B, C) of digital cameras. 40% | of the cameras were brand | | 6. A consumer watch group test three brands (A, B, C) of digital cameras. A and 30% of the cameras were brand B. The consumer watch group found that A and 30% of the cameras were brand B. The consumer watch group found that A and 30% of brand C were defective. | t 2% of brand A cameras | | 1. C. Alico All of brand B Were defective, and 370 of oxone | e. | | a. Find the probability that a camera was brand A and defective. | | | (0.4)(0.02) = 0.000 | | | a. Find the probability that a camera was brand A and defective. b. Find the probability that a camera was brand C and not defective. | 1 - 173 | | | 3)(0,91)=0,21 | | (30%) [912] of 30 · 91 or [0] | \sim \sim | | a vivi di Ada anno in divisible by 3 | 36 3 | | 7. Toss two dice. a. Find the probability that the sum is divisible by 3. | 3. 24 | | 7. Toss two dice. a. Find the probability that the sum is an odd number or a number divisible by b. Find the probability that the sum is an odd number or a number divisible by | 2/2 = 3 | | | | | 8. How many 5 character passwords are possible if the first two characters mu | st be a letter, the next two | | 8. How many 5 character passwords the property of the last character must be chosen from {#, \$, &, | 48 | | 26.26 10.10.4 TOG | 1 ng ordered nairs | | 8. How many 5 character passwords are possible if the first two characters must be digits, and the last character must be chosen from {#, \$, &, 26.26.10.10.4.20.70.70.70.70.70.70.70.70.70.70.70.70.70 | npie space as ordered pairs. | | 9. Toss a coin, then toss a single the Find the current property (H1, H2, H3, H4, H5, H6, T1, T2, T3, T4) T3 | 5, 76) | | And the same of th | A SECURITY CONTRACTOR OF THE PROPERTY P | | 10. In a survey of 80 commuter students, 23 had purchased parking permits ar | nd 20 had paid for metered | | 10. In a survey of 80 commuter students, 23 had purchased parking permit for meter parking. Forty said they had neither purchased a permit nor ever paid for meter parking. | ered parking. Find the | | parking. Forty said they had neither purchased a permit nor ever paid for incorprobability that a commuter student had purchased a parking permit but still per | aid for metered parking at | | probability that a commuter student nate parents | (PXM) | | some time. $P(P \cap M) = \frac{3}{80}$ | (20 (9)) | | • | | | 11. Six students are giving presentations at a workshop. Joe has requested to | be first, since he has anomer their presentations? | | commitment that day. In now many ways can the students | ve their presentations. | | 1.5.4.3.2.1 € 120 ways | | | | | | | | | $P = \{k \in V\}, O = \{r, u, t\}$ | | | 1. True or False: Use $T = \{t, u, r, k, e, y\}, P = \{k, e, y\}, Q = \{r, u, t\}$ | | | $t \in T \qquad P \subseteq T \qquad \emptyset \subseteq T \qquad e \subseteq I$ | | | te T $P \subseteq T$ $\emptyset \subseteq T$ $e \subseteq T$ $\{e\} \subseteq T$ $\{rue\}$ $\{ru$ | | | 2. Write in loster notation. | tiple of 10} | | a. $H = \{x \mid x \in W \text{ and } x \leq 4\}$ b. $\{0 \cdot b \in V \text{ and } b \text{ is a new } b \in V \text{ and } b \text{ is a new } b \in V \text{ and } b \text{ is a new } b \in V \text{ and } b \text{ is a new } b \in V \text{ and } b \text{ is a new } b \in V \text{ and } b \text{ is a new } b \in V \text{ and } b \text{ is a new } b \in V \text{ and } b \text{ is a new } b \in V \text{ and } b \text{ is a new } b \in V \text{ and } b \text{ is a new } b \in V \text{ and } b \text{ is a new } b \in V \text{ and } b \text{ is a new } b \in V \text{ and } b \text{ is a new } b \in V \text{ and } b \text{ is a new is a new $ | * Commence of the | | $\{0,1,2,3,4\}$ $\{0,1,2,3,4\}$ | and the same of th | | for each of the following sets. | - | | 3. Determine the cardinal number, $n(A)$, for each of an expension $A = \{x: x \text{ is a state in the U.S.}\}$ b. $A = \{1, 0, \emptyset, \{\emptyset\}\}$ | | | | | | n(A)=50 | | | the state of s | | 7. In each Venn Diagram below, shade the region associated with the given set. a. $(A \cup B') - A$ b. $A \cup (B \cup A)'$ c. $A \cap (B \cup C')'$ g. $(A \cap B) - C$ U A B U A B (extras, if needed) 8. Describe the shaded region using set operation notation: 9. A certain store has 100 bikes for sale. 35 of these bikes are red, 28 are ten-speed, and 70 cost \$100 or more. There are 14 red bikes that cost less than \$100 and are not ten-speed, but we will find 13 red bikes that cost \$100 or more and are not ten-speed. Twenty of the ten-speed bikes that cost \$100 or more are not red. There are 30 bikes costing \$100 or more that are neither red nor ten-speed. How many bikes are - a. red or ten-speed? 85 - b. not red? 65 - c. red, but not ten-speed? $\chi\gamma$ - d. neither red, nor ten-speed? 10. Find the number of elements in sets A, B, and C using the given information. $$n(A \cap B) = 8$$, $n(A \cap C) = 5$, $n(A \cap B \cap C) = 3$, $n(A - B) = 9$, $n(B - C) = 10$, $n(A \cup B) = 29$, $n(B \cup C) = 33$ $$n(A) = 17$$ $n(B) = 20$ 11. Use a one-to-one correspondence to show that $\left\{1, \frac{2}{3}, \frac{3}{5}, \frac{4}{7}, \frac{5}{9}, \dots\right\}$ has cardinal number \aleph_0 .