We label the points A (-2,1) and B (3,4).

$$d(A, B) = \sqrt{[3 - (-2)]^2 + (4 - 1)^2}$$

= $\sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34}$

- (a) The center is at (0, 0) and the radius is 2, so the equation of the circle is x² + y² = 4.
 - (b) The center is at (1, 4) and the radius is 1, so the equation of the circle is $(x-1)^2 + (y-4)^2 = 1$
- 8. $x^2 + y^2 + 4x 10y + 13 = 0$ Complete the square on x and y to write the equation in standard form:

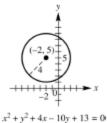
$$x^{2} + y^{2} + 4x - 10y + 13 = 0$$

$$(x^{2} + 4x +) + (y^{2} - 10y +) = -13$$

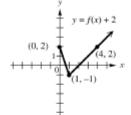
$$(x^{2} + 4x + 4) + (y^{2} - 10y + 25) = -13 + 4 + 25$$

$$(x + 2)^{2} + (y - 5)^{2} = 16$$

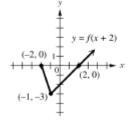
The circle has center (-2, 5) and radius 4.



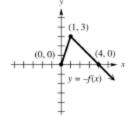
16. (a) Shift f(x), 2 units vertically upward.



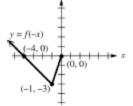
(b) Shift f(x), 2 units horizontally to the left.



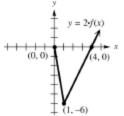
(c) Reflect f(x), across the x-axis.



(d) Reflect f(x), across the y-axis.



(e) Stretch f(x), vertically by a factor of 2.



17. Answers will vary. Starting with $y = \sqrt{x}$, we shift it to the left 2 units and stretch it vertically by a factor of 2. The graph is then reflected over the *x*-axis and then shifted down 3 units.

3.
$$45.2025^\circ = 45^\circ + 0.2025^\circ$$

 $= 45^\circ + 12.15'$
 $= 45^\circ + 12' + 0.15'(60'')$
 $= 45^\circ + 12' + 0.15'(60'')$
 $= 45^\circ + 12' + 09''$
 $= 810^\circ - 720^\circ = 90^\circ.$
(c) 810° is coterminal with
 $= 80^\circ + 360^\circ = 280^\circ.$
(c) 810° is coterminal with
 $= 80^\circ + 360^\circ = 280^\circ.$
(c) 810° is coterminal with
 $= 80^\circ + 360^\circ = 280^\circ.$
(c) 810° is coterminal with
 $= 80^\circ + 360^\circ = 280^\circ.$
(c) 810° is coterminal with
 $= 80^\circ + 360^\circ = 280^\circ.$
(c) 810° is coterminal with
 $= 80^\circ + 360^\circ = 280^\circ.$
(c) 810° is coterminal with
 $= 80^\circ + 360^\circ = 280^\circ.$
(c) $810^\circ = 280^\circ.$
(c) 810° is coterminal with
 $= 80^\circ + 360^\circ = 280^\circ.$
(c) $810^\circ = 280^$

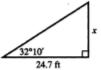
14. Apply the relationships between the lengths of the sides of a $30^\circ - 60^\circ$ right triangle first to the triangle on the right to find the values of y and w. In the $30^\circ - 60^\circ$ right triangle, the side opposite the 60° angle is $\sqrt{3}$ times as long as the side opposite to the 30° angle. The length of the hypotenuse is 2 times as long as the shorter leg (opposite the 30° angle).

Thus, we have $y = 4\sqrt{3}$ and w = 2(4) = 8. Apply the relationships between the lengths of the sides of a $45^\circ - 45^\circ$ right triangle next to the triangle on the left to find the values of *x* and *z*. In the $45^\circ - 45^\circ$ right triangle, the sides opposite the 45° angles measure the same. The hypotenuse is $\sqrt{2}$ times the measure of a leg. Thus, we have x = 4 and $z = 4\sqrt{2}$

$$19. \quad \csc\theta = -\frac{2\sqrt{3}}{3}$$

Since $\csc \theta$ is negative, θ must lie in quadrant III or quadrant IV. The absolute value of $\csc \theta$ is $\frac{2\sqrt{3}}{3}$, so $\theta' = 60^\circ$. The quadrant III angle θ equals $180^\circ + \theta' = 180^\circ + 60^\circ = 240^\circ$, and the quadrant IV angle θ equals $360^\circ - \theta' = 360^\circ - 60^\circ = 300^\circ$.

26. Let x = the height of the flagpole.



 $\tan 32^{\circ}10' = \frac{x}{24.7}$ $x = 24.7 \tan 32^{\circ}10' \approx 15.5344$ The flagpole is approximately 15.5 ft high.

