Cartesian Products (p. 41)

Ordered Pair: a grouping (not a set) in which the order matters. Ordered pairs are placed in parentheses. (a, b) is an ordered pair in which a comes first and b comes second. A pair of shoes is ordered because it **does matter** which shoe is which (left, right). A pair of socks is not an ordered pair because it doesn't matter which sock is which.

Cartesian Product of two sets: is a set operation denoted by A × B (read A cross B) is the set of all possible ordered pairs such that the first element of the ordered pair is an element of A and the second element of the ordered pair is an element of B.

× Charts or Tree diagrams can be used to determine Cartesian Products.

Example 1: Given $A = \{1, 2\}$ and $B = \{left, right\}$, find $A \times B$.

Example 3: Find $A \times A$ if $A = \{10, 11, 12\}$.

Tree Diagram 10 (10,10)	× Chart		
10 [1] (10,11)	1 10	11	/2
10 (1912)	10 (10,10)	(10,11)	(10) 12)
12 (11,11)	11 (11,10)	(1611)	(11,12)
Answer: $(12,11)$	12 (12,10)	(13/1)	(12,12)
	11,11) (11,12) (12,10) (12,11	1.912,123	

Example 5: If $A = \{1, 2, 3\}$ $B = \{0, 1, 2\}$ and $C = \{4, 5\}$. Find $(A \cup B) \times C$.

 $(A \cup B) = \{g_{1,2,3}\}$ $[\{(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}$

Ex 6: Axe = {(,4), (1,5), (2,4), (2,5), (3,4), (3,5)}