MATH 261 $-THE\ \underline{CLASSIC}\ EDITION$

Homework

Section	Page	Problems
1.1	12	1, 3, 5, 11, 15, 19, 21, 23, 33, 35, 37, 39, 41, 43, 45, 47, 51, 56
		(<i>Hint</i> : $top\ half\ of\ y^2 = 4 - x^2$), 57, 58, 60, 61, 63, 64, 65, 67, 69, 75
1.2	23	<i>odd</i> 1 − 9; 13, 25, 26, 33, 35, 45, 53, 57
1.3	37	1, 3, 7, 9, 11, 21, 22, 23, 25, 27, 29, 31, 57, 59, 61, 65, 67
		Find all solutions on the interval $[0, 2\pi]$: $2\sin t + 5 = 4$;
		$4sin^2\theta - 1 = 0$; $sin^2\theta - 3sin t + 2 = 0$; $\sqrt{3} sec\theta + 2 = 0$;
		$cos3\theta = \frac{1}{2}$.
2.1	48	1 , 9 , <i>odd</i> 11 – 49
2.2	57	7, 8, 17, 18, 19, 31, 33, 35 (Do 31, 33, 35 by picture).
		Prove: $\lim_{x\to 2} \frac{2x^2 - 5x + 2}{x - 2} = 3.$
2.3	66	1, 7, 9, 13, 21, 23, 27, 29; odd 33 – 41, odd 49 – 55, 63, 65
2.4	76	odd 1 $-$ 41, $except$ for 25
2.5	85	$odd \ 1-15; \ odd \ 19-27; \ 31, \ 39$
		Let $f(x) = c^2 x$ if $x < 1$
ID		$3cx - 2$ if $x \ge 1$ Determine all values of c so that f is continuous on
$\mathbb{R}.$		Suppose $f(x) = c$ if $x = -3$
		Suppose $f(x) = c$ if $x = -3$ $\frac{9-x^2}{4-\sqrt{x^2+7}}$ if $-3 < x < 3$ Solve for c and d so it is continuous on $[-3, 3]$.
		$d = \sqrt{x^2 + 7}$ if $x = 3$;
		$f(x) = x^3 + x - 6$ has a 0 between 1 and 2.
		Estimate it to the nearest tenth $(Answer\ 1.6)$.
3.1	97	1, 2, 5, 7, 9, 11, 13, 15, 16, 17, 19
3.2	107	$Odd\ 1-21;\ 31,\ 32,\ 33,\ 37,\ 39,\ 41,\ 43,\ 45,\ 47,\ 49,\ 50,\ [4\pi r^2;\ 400\pi].$
		Find $f'(x)$ for $f(x) = \frac{1}{5x+2}$ and $f(x) = \sqrt{7x+3}$. $\left[\frac{-5}{(5x+2)^2}, \frac{7}{2\sqrt{7x+3}} \right]$
3.3	116	$Odd\ 1-33;\ odd\ 41-47;\ 53,\ 55,\ 56,\ 61,\ 67,\ 71,\ 73,\ 77.$ The height
		of a ball at time t is $s(t) = 224t - 16t^2$. Find a) velocity at time
		t= 4, $t=$ 8; $b)$ when the ball's velocity equals 48 and the height of
		the ball at that time; $c)$ when the ball hits the ground; $d)$ the
		maximum height the ball reaches; $e)$ the velocity when the ball has
		height 640. $Answers: a)$ 96, $-$ 32; $b)$ 5 \cdot 5, 748; $c)$ 14; $d)$ 784; $e)$ 4, 10

(OVER)

Section	Page	Problems
3.4	125	Odd 1 - 37; 41, 45, 47
3.5	135	IN CLASS
	144	1, 5, odd 7 – 17; 21, odd 27 – 45, 61, 63, 65, 71, 73, 77, 79, 87
3.7	151	odd 1 - 11, 15, 19, odd 23 - 27
3.8	158	1, 5, 9, 11, 12 $\left(\frac{-111.7in^3}{min}\right)$, 13, 14, $\left(\frac{132}{\sqrt{116}}\right)$, 15, 17, 18 (600π) , 19, 20
		$\left(rac{2500}{\sqrt{249,600}}pprox 5ft./sec. ight)$, 23, 33
4.1	175	1, 3, 5, 7, 8 $(20, \frac{-4}{5})$, odd 9 – 25; 29, 37
4.2	181	3, 5, <i>odd</i> 9 – 15; 35
4.3	190	$Odd \ 1 - 19; \ odd \ 23 - 39$
4.4	198	1, 3, 5, 11, 15, 21, 29, 31, 33, 35
4.5	206	1, 3, 7, 9, 11, 15, 19, 21, 23, 29, 35
4.6	215	1, 3, 4, 5, 7, 9, 10, 11, 13, 15, 17, 18, 19
4.7	229	1, 3, 9, 11, 12, 21, 29, 30, 31. A car traveling at 25 $ft./sec.$ at
		time $t=0$ accelerated at 10 $ft./sec.^2$. Find $a)$ the velocity at time
		t=8;b) the time t when the velocity equals 50 $ft./sec.$ and the
		distance traveled by the car from time $t=0$ to that time;
		c) Find the velocity at the time the car has traveled 120 $feet$.
		Answer: a) 105 ft./sec.; b) 2.5 sec., 93.75 feet; c) 55 ft./sec.
5.1	249	$Odd \ 1-53; \ 59, \ 60 \ \left(16t^2feet, \ -96 \ ft./sec., \ 2.5\sqrt{10} \ sec.\right), \ 61, \ 64 \ (t^2, 15),$
65		
5.2	255	Odd 1 $-$ 49; 53, 55, 63
5.3	266	Odd 1 $-$ 21; 25, 27. Rework 25 and 27 on the interval $[1,\ 4]$ using
		inscribed rectangles. $\left(ANS:\ 24,\ \frac{125}{3}\right)$
5.4	273	1, 5, 7, 9; <i>odd</i> 13 – 35
5.5	281	Odd 1 $-$ 25
5.6	291	Odd 1 – 35; 41, 43, 49. Even 12 – 32
		$\left[-\frac{1}{70}, \ \frac{-481}{16}, \ \frac{-16}{3}, \ 0, \frac{5}{6}, \ \frac{37}{2}, \ 6.65, \ \frac{2}{15}, \ 2, \ \frac{65}{16}, \ 6 - 3\sqrt{2} \approx 1.76 \right]$
5.7	298	1, 30
12.1	610	odd 1 - 25, 35
12.2	621	odd 1 - 19, 23, 25, 33
12.3	632	odd 1 - 27,35