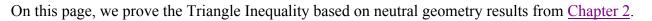
Triangle Inequality Proof is the idol before whom the pure mathematician tortures himself.

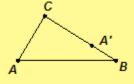
-YSir Arthur Eddington (1882–1944)



Lemma. In a neutral geometry, if one angle is greater in measure than another angle of a triangle, then the opposite side of the greater angle is longer than the opposite side of the lessor angle. Furthermore, the longest side of a triangle is opposite the angle of greatest measure.

Proof. Given $\triangle ABC$. Assume $m(\angle BAC) > m(\angle CBA)$. Let A' be on ray \overrightarrow{CB} such that $\overrightarrow{AC} \cong \overrightarrow{A'C}$. Then $\angle CAA' \cong \angle CA'A$. One of the following three is true: B is between C and A': A' =С B; or A' is between C and B.

Case 1. Assume *B* is between *C* and *A'*. Then $B \in int(\angle A'AC)$ and by the



Ch. 3 Transformational

Exterior Angle Theorem $m(\angle CBA) > m(\angle CA'A)$. Thus

 $m(\angle A'AC) = m(\angle A'AB) + m(\angle BAC) > m(\angle BAC)$. Hence

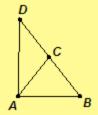
 $m(\angle CBA) > m(\angle CA'A) = m(\angle CAA') > m(\angle BAC)$, which contradicts the initial assumption. Hence B is not between C and A'.

Case 2. Assume A' = B. Then $\overline{AC} \cong \overline{BC}$. Hence $\angle BAC \cong \angle CBA$, which contradicts the initial assumption.

By Cases 1 and 2, we must have A' between C and B. Hence, BC = BA' + A'C > A'C = AC. The cases for the other pairs of sides may be proved similarly. Therefore, the longest side of a triangle is opposite the angle of greatest measure.//

Triangle Inequality. In a neutral geometry, the length of one side of a triangle is strictly less than the sum of the lengths of the other two sides.

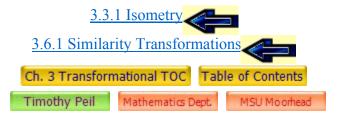
Proof. Given $\triangle ABC$. We prove one case here; the other cases are similar. Let D be on ray \overrightarrow{BC} such that



C is between B and D and $\overline{AC} \cong \overline{DC}$. Since ΔACD is an isosceles triangle. $\angle CAD \cong \angle CDA$. Since C is between B and D and $C \in int(\angle BAD)$, $m(\angle BAD) = m(\angle BAC) + m(\angle CAD)$, by the Angle Addition Postulate. Hence $m(\angle BAD) > m(\angle CAD) = m(\angle CDA) = m(\angle BDA)$. By the Lemma, BD > BA.

Therefore, since C is between B and D, AC + CB = DC + CB = DB > BA. Since the proofs of the other two cases are similar, the length of one side of a triangle is strictly

less than the sum of the lengths of the other two sides.//



- C