3.2.1 Preliminary Definitions and Assumptions

Knowing is not enough; we must apply. Willing is not enough; we must do. — Johann von Goethe (1749–1842)

Definition. A *mapping* (or function f from A to B) of a set A into a set B is a rule that pairs each element of A with exactly one element of a subset of *B*. The set *A* is called the *domain*, and the set of all elements of *B* (a subset of *B*) that are paired with an element from *A* is called the *range*.

Definition. A mapping f from *A* to *B* is *onto B* if for any *b* in *B* there is at least one *a* in *A* such that $f(a)$ = *b.*

Definition. A mapping *f* from *A* to *B* is *one-to-one* if each element of the range of *f* is the image of exactly one element from *A*.

Definition. A *transformation* is a one-to-one mapping of a set *A* onto a set *B*.

Definition. A *transformation of a plane* is a transformation that maps points of the plane onto points in the plane.

Definition. A nonempty set *G* is said to form a *group under a binary operation*, *, if it satisfies the following conditions:

- i. If *A* and *B* are in *G*, then *A*B* is in *G*. (The set is *closed* under the operation, *closure*.)
- ii. There exists an element *I* in *G* such that for every element *A* in *G*, $I^*A = A^*I = A$. (The set has an *identity*.)
- iii. For every element *A* in *G*, there is an element *B* in *G* such that $A^*B = B^*A = I$, denoted A^{-1} . (Every element has an *inverse.*)
- iv. If *A*, *B*, and *C* are in *G*, then $(A * B) * C = A * (B * C)$. (*associativity*)

Theorem 3.0. The set of transformations of a plane is a group under composition.

Proof. The result follows from the following:

The composition of two transformations of a plane is a transformation (Exercise 3.4).

The inverse of a transformation is a transformation (Exercise 3.5).

The identity function is a transformation and composition of functions is associative (Exercise 3.5).//

Exercise 3.2. Which of the following mappings are transformations? Justify.

- a. $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = \frac{x-3}{2}$.
- b. $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2$.
- c. $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that $f(x, y) = (x-2, y+1)$.
- d. $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that $f(x, y) = (2x, 3y)$.
- e. Let *P* be a point in a plane *S*. Define $f : S \to S$ by $f(P) = P$ and for any point $Q \neq P$, $f(Q)$ is

the midpoint of \overline{PO} .

Exercise 3.3. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ and $g: \mathbb{R}^2 \to \mathbb{R}^2$ be transformations defined respectively by $f(x, y) = (x - 4, y + 1)$ 1) and $g(x,y) = (x + 2, y + 3)$.

- a. Find the composition $f \circ g$.
- b. Find the composition $g \circ f$.
- c. Find the inverse of f , f^{-1} .
- d. Find the inverse of *g*, g^{-1} .

Exercise 3.4. Prove the composition of two transformations of a plane is a transformation of the plane.

Exercise 3.5. (a) Prove the identity function is a transformation. (b) Prove the inverse of a transformation of a plane is a transformation of the plane. (c) Prove the composition of functions is associative.

3.1.2 Historical Overview 3.2.2 An Analytic Model for the Euclidean Plane Ch. 3 Transformational TOC Table of Contents Timothy Peil Mathematics Dept. MSU Moomead © Copyright 2005, 2006 - Timothy Peil