
3.2.2 An Analytic Model of the Euclidean Plane
The intelligence is proved not by ease of learning, but by understanding what we learn.

—Joseph Whitney

      To be able to define transformations in a “nice” matrix form, mathematicians modify our model of 
the Euclidean plane that we used in Chapter 2. The modification in the model is motivated from the 
standard equation for a line in the Euclidean plane, ax +by + c = 0 where a and b are not 
both zero. Rewrite this equation as the product of matrices to obtain the matrix equation 

 where a and b are not both zero. Since the coefficients a, b, and c define 

the line, the matrix [a, b, c] represents the line and the matrix [x, y, 1]T (the superscript T indicates the 
transpose of the matrix) represents the points that satisfy the equation. Hence, for this model a line is 
defined by an ordered triplet or row matrix [a, b, c] and a point is defined by an ordered triplet or 
column matrix, the transpose of [x, y, 1]. For easier writing of points, denote a point by  (x, y, 1 ) = [x, y, 
1]T.
      The only problem with this formulation is lines do not have a unique form. Note that the standard 
equations 2x + 3y + 5 = 0 and 6x + 9y + 15 = 0 represent the same line. In fact, all equations of the form 
2kx + 3ky + 5k = 0, where k is a nonzero real number, represent the same line as 2x + 3y + 5 = 0. Define 
an equivalence relation

[a1, a2, a3]  [b1, b2, b3], if bi = kai, i = 1, 2, 3 where 
We modify the above definition of a line as the equivalence class of ordered triples (row matrix) [a1, a2, 
a3] where a1 and a2 are not both zero.

Since the form for the line and point are motivated from a homogeneous matrix equation, we call the 
row matrix [a1, a2, a3], the homogeneous coordinates of a line, and the column matrix (x1, x2, 1), the 
homogeneous coordinates of a point. 

We summarize the definitions of the undefined terms point, line, and incident for this model of the 
Euclidean plane.

      What happens with this model when three distinct points are collinear? Let (x1, x2, 1), (y1, y2, 1), and
(z1, z2, 1) be three distinct collinear points. Since the points are collinear, there is a line [a1, a2, a3] that all 
three points satisfy, i.e., 

, , 

or
a1x1 + a2x2 + a3 = 0
a1y1 + a2y2 + a3 = 0
a1z1 + a2z2 + a3 = 0

or
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point A column matrix denoted by (x1, x2, 1). 
line An equivalence class of row matrices [a1, a2, a3] where a1 and a2 cannot both be zero.
incident A point X(x1, x2, 1) is incident with a line l[l1, l2, l3] iff lX = 0.



From linear algebra, a homogeneous equation has a nontrivial solution [a1, a2, a3] if and only if 

We have proven one direction of the following theorem. See Exercise 3.17 to complete the proof.//

Proposition 3.1. Three distinct points (x1, x2, 1), (y1, y2, 1), and (z1, z2, 1) are collinear if and only if the 
determinant

Note that Proposition 3.1 implies that a line through two distinct points (a1, a2, 1), and (b1, b2, 1) may be 
written as 

A similar theorem may be stated for three distinct lines being concurrent. A set of lines is concurrent if 
the lines have a common point of intersection.

Proposition 3.2. Three distinct lines l, m, and n are all concurrent or all parallel if and only if the 
determinant

Note that Proposition 3.2 implies that a point on two distinct lines [p1, p2, p3], and [q1, q2, q3] may be 
found from the equation 

 where l represents an arbitrary unknown line.

Example. Find the point of intersection of lines [1, 1, 1] and [2, 1, –1].

 iff  2l1 – 3l2 + l3 = 0  iff  .

Hence the point of intersection is (2, –3, 1). Note: The third position of the point in this model must be a 
one. If it is not a one, then form the equivalent column matrix that has a one in the third position.

The formula for the distance between two points X(x1, x2, 1) and Y(y1, y2, 1) is the usual Euclidean 



distance formula . 
       Next, consider the angle between two lines p[p1, p2, p3], and q[q1, q2, q3]. Let  where α and

β are are the measures of the angles formed by the x-axis with the lines p and q, 
respectively. Remember the slope of a line through the origin and the tangent of 
the angle formed by the line with the x-axis are related,  and 

. Use a difference of two angles identity from trigonometry to obtain

.

This trigonometry result motivates the definition of the measure of the angle between two lines p and q, 

 where , if 

, if .

Unlike in the motivation, the definition is for any two lines. 

Exercise 3.6. Find two lines l[l1 ,l2, l3] through the point (2, –3, 1).

Exercise 3.7. Given the line [4, –2, 3]. (a)  Write two other sets of homogeneous coordinates for the line. 
(b)  Write an equation of the line.  (c)  Find two distinct points (x1, x2, 1) on the line.

Exercise 3.8. Find the line l[l1, l2, l3] for each problem. (a)  x1-axis.  (b)  x2-axis.  (c)  The line where all 
points have the same first and second coordinates. 

Exercise 3.9. (a)  What are the coordinates of the origin?  (b)  Find the general form of a line l[l1, l2, l3]
through the origin. 

Exercise 3.10. Find the two lines l[l1, l2, l3] that represent the two coordinate axes.

Exercise 3.11. Find the line l[l1, l2, l3] that contains the points (3, 5, 1) and (–7, 3, 1). 

Exercise 3.12. Find the point of intersection of the lines [–2, 4, –3] and [3, –5, 2].

Exercise 3.13. Use the propositions to justify your answer for the following. (a) Are the points (8, 2, 1), 
(7, 5, 1), and (5, 11, 1) collinear?   (b)  Are the lines [4, 2, 3], [–3, 1, 0], and [2, –7, 3] concurrent?  

Exercise 3.14. Use the definition to find the measure of the angle between each pair of lines. (a)  [–2, 4, 
–3] and [3, –5, 2].  (b)  The coordinate axes. 

Exercise 3.15. (a)  What is the relationship between the coordinates of two distinct parallel lines? Justify 
the expressions.  (b)  Based on the definition of the measure of an angle between two lines, what is the 
measure of the angle between two parallel lines?



Exercise 3.16. Prove the relation used in defining lines is an equivalence relation.

Exercise 3.17. The steps in the converse of the proof of Proposition 3.1 are reversible, but require that 
the nontrivial solution, [a1, a2, a3], of the matrix equation cannot have both a1 and a2 be zero. Prove that 
this is true, which completes the proof of the proposition.

Exercise 3.18. Prove Proposition 3.2.
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