
4.7.2 Pascal’s Theorem
We are usually convinced more easily by reasons we have found ourselves than by those which have 

occurred to others.
— Blaise Pascal (1623–1662)

Here, we answer the questions posed at the end of the introductory page on conics in the projective plane. 
(Any two points may be chosen as the centers of the respective pencils. Do different choices for the centers 
give different point conics? Do any five points, no three collinear, determine a unique point conic?)

Definition. A simple hexagon ABCDEF is a set of six distinct points A, B, C, D, E, F, no 
three collinear, called vertices, and the six distinct lines AB, BC, CD, DE, EF, FA, called 
sides. The pairs of points A and D, B and E, and C and F are called opposite vertices. The three pairs of 

lines determined by opposite vertices are called diagonal lines. 
The pairs of lines AB and DE, BC and EF, and CD and FA are 
called opposite sides. The three points of intersection of the 
opposite sides are called diagonal points.

In the figures illustrating a simple 
hexagon ABCDEF, the points I, J,
and K are diagonal points and the 
dotted lines are diagonal lines. An 
important note: The order in which 

the points are listed when naming a simple hexagon is important, since six 
points do not determine a unique simple hexagon. Further, note how the order 
and position of the points in the name imply the opposite vertices and 
opposite sides. Click here for a dynamic illustration of a simple hexagon  
GeoGebra or JavaSketchpad.

Exercise 4.46.  (a)  How many ways may the simple hexagon ABCDEF be named?  (b) How many distinct 
simple hexagons are determined by six distinct points?

Theorem 4.18. A, B, C, D are four points of a point conic defined by projectively related pencils with 
centers P and P' if and only if the diagonal points of simple hexagon ABCPDP' are collinear. 

Proof. Given simple hexagon ABCPDP', let J = PD · AB, K = P'A · PC, and L = P'D · BC be the diagonal 
points of ABCPDP'. Further, let a = PA, b = PB, c = PC, d = PD, a' = P'A, b' = P'B, c' = P'C, and d' = P'D.
We first prove that if a, b, c, d and a', b', c', d' are projectively related 
pencils with centers P and P', respectively, then J, K, and L are collinear. 
Click here to investigate with a dynamic illustration GeoGebra or 
JavaSketchpad.
      Assume A, B, C, D are four points of a point conic defined by 
projectively related pencils with centers P and P'.  Note 
 Let M = AB · PC and N = P'A · BC. Note A, J, B, M are collinear and N, L, 
B, C are collinear; further, J is on d, M is on c, N is on a', and L is on d'.
Hence,  and  are elementary 
correspondences. Thus, we have  Since B is a common element in the projectivity, 
Corollary 4.12 implies  is a perspectivity. Since A, N, P' are collinear and M, P, C  are 
collinear, we have AN · MC = P'A · PC = K. Hence, the diagonal point K of the hexagon is the center of the 
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perspectivity, i.e.   Hence, J, L, K are collinear. Therefore, the diagonal points of simple 
hexagon ABCPDP' are collinear. 
      The converse follows by reversing the steps in the argument.//

        Note the positions of P and P' in the name of the simple hexagon ABCPDP' in the theorem. This 
order is important in using the theorem. We now use Theorem 4.18 to answer the questions posed at the 
end of the page on conics in the projective plane. That is, do five distinct points determine a 
unique point conic?

Theorem 4.19. Any five distinct points, no three collinear, determine a unique point conic.

Proof. Let A, B, C, D, and E be five distinct points, no three collinear. By Theorem 4.17, there exists a 
point conic determined by the projectively related pencils of lines with centers A and B that contains all 
five points. Let F be a sixth point in this point conic. We assert that F is in the point conic determined 
when any two of the points A, B, C, D, or E are chosen as the centers of the pencils of lines. We show one 
case in detail. (How many cases are there?)
       By Theorem 4.18, the diagonal points of simple hexagon DEFACB are collinear, since C, D, E, F are 
four points of the point conic defined by pencils with centers A and B. Note that DEFACB and EFACBD
name the same simple hexagon; therefore, they have the same diagonal points. Hence, by Theorem 4.18, 
E, F, A, B are points of the point conic defined by pencils with centers C and D. Hence, F is in the point 
conic defined by C and D. 
       Note that in the first line of the preceding paragraph, C, D, and E can be placed in any order. Thus by 
following the same argument, F is also in the point conics defined by C and E, and D and E. The rest of 
the cases follow from these cases with various orders of the points A, B, C, D, and E. (Check a some of 
them.) Therefore, any five distinct points, no three collinear, determine a unique point conic.//

Exercise 4.47. (a)  How many cases are there in the proof of Theorem 4.19?  (b)  Extend the proof to 
include the case where A and C are the centers. 

        An immediate result of Theorems 4.18 and 4.19 is Pascal’s mystic hexagon theorem. Not until after 
the concept of duality was developed was the dual of Pascal’s Theorem proven.  The dual of Pascal’s 
Theorem is known Brianchon’s Theorem, since it was proven by C. J. Brianchon (1783–1864) in 
1806, over a century after the death of Blaise Pascal.  

Theorem 4.20. ( Pascal’s Theorem) If the vertices of a simple hexagon are points of a point conic, 
then its diagonal points are collinear.

Theorem 4.21. ( Brianchon’s Theorem) If the sides of a simple hexagon are lines of a line conic, 
then the diagonal lines are concurrent.

Pascal's Theorem may be used to more easily construct points of a point conic. Let A, B, C, D, E be 
five points, no three collinear. We know these points determine a point 
conic. Also, any additional point F of the point conic must be a point of 
the simple hexagon ABCDEF, but we do not have the sides AF or EF. 
Let M be an arbitrary point to form a line EM (a side of the simple 
hexagon); then point F will be on line EM. (How do you know such a 
point M exists?) Then I = AB · DE and J = BC · EM are diagonal points 
of the hexagon. By Pascal's Theorem, the diagonal points are collinear; 
therefore, the diagonal point K = CD · IJ. Finally, we locate F by F = 
EM · AK.

Click here for a dynamic illustration of a point conic constructed 



from Pascal's Theorem GeoGebra or JavaSketchpad.

       Use the dynamic geometry construction to investigate what happens when the sixth point, F, 
constructed using Pascal's Theorem approaches A in the simple hexagon ABCDEF. What appears to be 
true about the line AK and the point conic? Write your conjecture.

Exercise 4.48. Prove Pascal's Theorem.

Exercise 4.49. Use Pascal's Theorem to construct a sixth point in a point conic formed from five points, no 
three collinear. (May use dynamic geometry software.)

Exercise 4.50. Use Brianchon's Theorem to construct a sixth line in a line conic formed from five lines, no 
three concurrent. (May use dynamic geometry software.)
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