Classification and Formula

- A. Aliphatic hydrocarbons: no rings
 - a) Saturated: Have no double or triple bonds
 - 1. Alkanes (acyclic): Formula $C_n H_{2n+2}$
 - b) Unsaturated: Do have double or triple bonds
 - 2. Alkenes (have double bond): Formula C_nH_{2n}
 - 3. Alkynes (have triple bond): Formula C_nH_{2n-2}
- B. Cycloalkanes: Have ring, but no double bonds. Formula $C_{n}H_{2n}$
 - Saturated, because no double or triple bonds
- C. Aromatics: have planar, flat 6-membered ring (benzene) with 3 double bonds"Unsaturated", due to double bonds.

Summary: 5 special classes:

Name	Keys	Saturated?	Aliphatic/	Formula
			Aromatic	
Alkanes	Single bonds	Yes	Aliphatic	C_nH_{2n+2}
Alkenes	Double bond	No	Aliphatic	C_nH_{2n}
Alkynes	Triple bond	No	Aliphatic	$C_n H_{2n-2}$
Cycloalkanes	Ring	Yes	Cycloaliphatic	C_nH_{2n}
Aromatics	Flat 6-ring, with 3	No	Aromatic	
	double bonds			

• "Saturated" versus "unsaturated": are there any double or triple bonds?

• "Aliphatic" vs "Aromatic": is there a planar 6-membered ring (benzene)?

Names for Saturated Hydrocarbons

#	Name	Structure	Formula	Substituent	Substituent
C's					Name
1	Methane	CH_4	CH_4	-CH ₃	Methyl
2	Ethane	CH ₃ CH ₃	C_2H_6	$-CH_2CH_3$	Ethyl
3	Propane	CH ₃ CH ₂ CH ₃	C_3H_8	-CH ₂ CH ₂ CH ₃	Propyl
4	Butane	CH ₃ CH ₂ CH ₂ CH ₃	$C_4 H_{10}$	-CH ₂ CH ₂ CH ₂ CH ₃	Butyl
5	Pentane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	C ₅ H ₁₂	-CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Pentyl
6	Hexane	$CH_3(CH_2)_4CH_3$	C ₆ H ₁₄	$-CH_2(CH_2)_4CH_3$	Hexyl
7	Heptane	CH ₃ (CH ₂) ₅ CH ₃	C ₇ H ₁₆	$-CH_2(CH_2)_5CH_3$	Heptyl
8	Octane	$CH_3(CH_2)_6CH_3$	C ₈ H ₁₈	$-CH_2(CH_2)_6CH_3$	Octyl
9	Nonane	CH ₃ (CH ₂) ₇ CH ₃	C_9H_{20}	$-CH_2(CH_2)_7CH_3$	Nonyl
10	Decane	$CH_3(CH_2)_8CH_3$	$C_{10}H_{22}$	$-CH_2(CH_2)_8CH_3$	Decyl

Organic Nomanclature

- 1. Longest continuous chain of carbons gives the base name (alkane)
 - Helpful: circle the longest chain right away!
 - Helpful: put boxes around the attached "substituent" groups
- 2. number the base chain from the end with the nearest substituent
- 3. Name and give position of each alkyl substituent (ex, 3-methyl...)
- 4. If two or more different alkyl groups are present, list them in alphabetical order
 - If there are two copies of the same substituent, use "di" (ex, 2,5-dimethyloctane)