- 1. Draw the Lewis structure for a <u>neutral</u> oxygen atom
- 2. Draw the Lewis structure for a fluoride F^{-} anion
- 3. Draw the Lewis structure for NH₃.
- 4. Draw the Lewis structure for CH_2S .
- 5. Draw the Lewis structure for CHN.

- 6. Which of the following statements would be <u>false</u> when magnesium reacts with Cl_2 ?
 - a. The product would have ionic bonding
 - b. Each magnesium would give up two electrons
 - c. Each chlorine atom would <u>accept one</u> electron
 - d. In the product, the magnesium would be a <u>cation</u> and the chloride would be an <u>anion</u>
 - e. The formula for the product would be MgCl₃
- 7. Which of the following statements would be true regarding compounds with the formulas NaBr, C₂H₆O, and NF₃?
 - a. NaBr would have a <u>high melting</u> point because it is <u>ionic</u>; C_2H_6O and NF_3 would have <u>low melting points</u> (perhaps below room temperature) because they have <u>covalent</u> <u>bonding</u>.
 - b. NaBr and NF₃ would have <u>high melting</u> points because they are <u>ionic</u>; C_2H_6O would have a <u>low melting point</u> (perhaps below room temperature) because it has <u>covalent</u> <u>bonding</u>.
 - c. NaBr would have a <u>low melting</u> point because it is <u>ionic</u>; C_2H_6O and NF₃ would have <u>high melting points</u> because they have <u>covalent bonding</u>.

- 8. Draw at least one good Lewis structure for NO_2^- anion?
- 9. For the NO_2^- anion in problem 8, which of the following statements is <u>false</u>?
 - a. The real thing would be a <u>hybrid</u>, because two equally good Lewis structures could be drawn
 - b. In the real anion, one N-O bond would be like an N-O single bond, the other like an N=O double bond
 - c. In the real anion, the lengths of the two N-O bonds are equal
 - d. In the real anion, the lengths of an N-O bond would be shorter than for an N-O single bond and longer than for an N=O double bond
- 10. For the elements C, O, Al, and Si, rank them in order of <u>increasing electronegativity</u>, for least electronegative to most electronegative/
 - a. C < O < Al < Si
 - b. Al < Si < C < O
 - c. O < C < Si < Al
 - $d. \quad Al < C < Si < O$
- 11. Which of the following statements is <u>true</u> for Br₂, CaCl₂, and NF₃?
 - a. Br_2 is nonpolar covalent, $CaCl_2$ is ionic, and NF_3 is polar covalent
 - b. $CaCl_2$ is nonpolar covalent, Br_2 is ionic, and NF_3 is polar covalent
 - c. NF_3 is nonpolar covalent, $CaCl_2$ is ionic, and Br_2 is polar covalent
- 12. What would be an appropriate name for SO₃?
 - a. Sulfur oxide.
 - b. Sulfate.
 - c. Sulfur trioxide.
 - d. Sulfur (VI) oxide
- 13. Write the formula for aluminum sulfide
- 14. Which of the following would be the correct name for $Fe_2(SO_4)_3$? (You may need to look up the charge for the sulfate antion)
 - a. Iron sulfate
 - b. Iron (II) sulfate
 - c. Iron (III) sulfate

Did you remember to write your name on the front?