JASPERSE CHEM 160 PRACTICE TEST 1 VERSION 1 Corrected

Ch. 11 Liquids, Solids, and Materials

Ch. 15 The Chemistry of Solutes and Solutions

Ch. 13 Chemical Kinetics

Formulas for First Order Reactions: $kt = ln([A_o]/[A_t])$

 $kt_{1/2} = 0.693$

1. Which of the following would have the <u>highest molar heat of vaporization</u>?

a. I₂

b. Br₂

c. Cl₂

d. F₂

2. Which of the following would have the <u>highest vapor pressure</u> at 25°C?

a. C_4H_{10}

b. NaCl

c. $C_6H_{12}O_6$

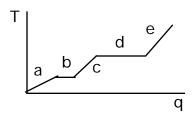
d. C₄H₉NH₂

3. Arrange CH₃OH, NaF, and CO₂ in order of increasing boiling point.

a. $CH_3OH < CO_2 < NaF$

b. CO₂ < NaF < CH₃OH
c. CO₂ < CH₃OH < NaF
d. NaF < CO₂ < CH₃OH
e. none of the above

4. Region "c" on the heating curve shown (Temperature versus heat, "q") corresponds to:


a. a pure gas increasing in temperature

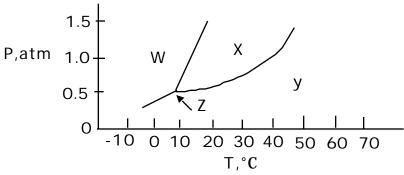
b. a liquid increasing in temperature

c. a solid increasing in temperature

d. a solid melting

e. a liquid boiling

5. Which of the following would have the highest boiling point?


a. CH₃CH₂CH₂OH b. CH₃CH₂OCH₃

c. CH₃CH₂OH

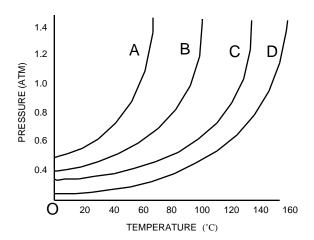
d. CH₃CH₂CH₂CH₃

- 6. The H_{fusion} for water is 6.0 kJ/mol, and the specific heat for liquid water is 4.18 J/g-K. How many \underline{kJ} of heat would it take to convert 36 g of solid ice (18 g/mol) from 0°C to liquid water at 53°C?
 - a. 8.0 kJ
- b. 12.0 kJ
- c. 20.0 kJ
- d. 7987 kJ

- 7. In which phase does the substance whose phase diagram is shown below exist at 0°C and atmospheric pressure?
 - a. gas
- b. liquid
- c. solid
- d. supercritical fluid

- 8. Which of the following would have the greatest surface tension at 25°C?
 - a. CH_4
- b. CH₃F
- c. CH₃OH
- d. CO
- 9. Which of the following shows a relatively high boiling temperature due to <u>hydrogen</u> bonding?
 - a. CH₃OH
- b. CH₃SH
- c. CH_3OCH_3
- d. SnH₄
- 10. Which of the following substances has London dispersion forces as its $\underline{\text{only}}$ $\underline{\text{intermolecular}}$ force?
 - a. HCN
- b. CH_4
- c. NH₃
- $d. H_2S$
- 11. Which is a gas at room temperature? (You may apply memory as well as principle to answer this question!)
 - a. Na_2S
- b. NO_2
- c. H₂O
- d. Fe

12. Which is a brittle, high-melting solid but dissolves in water?


a. I₂

b. K₂CO₃

c. $C_{12}H_{26}$

d. Al

- 13. Which of the following is not characteristic of a metallic solid?
 - a. High electrical conductivity
 - b. High thermal conductivity
 - c. Good water solubility
 - d. Variable but often high melting point
 - e. Variable hardness, but malleable as opposed to brittle
- 14. Which of the following statements is true?
 - a. All of the molecules in the liquid state have the same energy
 - b. When evaporation occurs the average kinetic energy of the molecules remaining in the liquid state is lower than that of the molecules that left, resulting in cooling of the liquid
 - c. The vapor pressure of a liquid decreases as the temperature increases
 - d. The rate of evaporation is faster for substances with lower vapor pressures than for substances with higher vapor pressures
- 15. In a liquid, the attractive intermolecular forces are:
 - a. weaker than in a substance that is a gas at the same temperature
 - b. always insignificant and unable to keep molecules close together
 - c. so strong that molecules are locked close together and are unable to move
 - d. strong enough to hold molecules relatively close but <u>not</u> strong enough to keep molecules from moving past each other
- 16. Which of the following statements is <u>false</u> for the vapor pressure/temperature diagram shown:?

- a. the vapor pressure for C at 60° is about 0.4 atm
- b. substance D has the weakest binding forces
- c. the normal boiling point for A is about 58°
- d. to achieve a vapor pressure of 0.4 atm, substance D must be heated to about 100°C

a. diamondb. solid gluec. CH₂Br₂ i	following statements is fa is higher melting than CH cose is less dense than mel s more volatile than CBr ₄ on of freon-12 absorbs he	¹ ₃ CH ₂ OH (alcohol) lted, liquid glucose at room temperature	e
18. Potassium hy	droxide dissolves readily	in water due to	
b. strong c. strong	g solute-solute interactions g solvent-solvent interaction g solute-solvent interaction solute-solvent interaction	ons ns	
19. Which of the	following substances wor	uld be the most solu	able in water?
a. Ar	b. CH_3CH_2 CH	$_2$ CH $_3$ c. No	aCl d. CH ₄
a. the meltingb. the boilingc. the vapor	following effects would many point would decrease go point would decrease pressure would decrease ical conductivity of the solutions.		_
 a. C₅H₁₁OH b. C₅H₁₁OH c. CCl₄ > C 		y in water?	
a. In a satur differs from the different f	om the rate at which solid	m, the rate at which material is reforming the primary reason is tooks so in an exother	because dissolving results in rmic way
23. Which of the	following should be least	miscible in carbon	tetrachloride, CCl ₄ ?
a. C_6H_{14}	b. CH ₃ OH	c. Br ₂	d. C_3H_8
24. Which one o melting/freez a. CH ₃ C b. AIPO c. NaNo d. CaBr	$\mathrm{CH_2OH}$	eous solutions wou	ld have the lowest

25.	a) 1 L of Purb) 1 L of watc) 1 L of wat	g four solutions, and ce Water er with 0.15 moles of er with 0.15 moles of er with 0.15 moles of	CH ₃ OH added CH ₃ CH ₂ OH	atement is <u>fals</u>	<u>e</u> :
	b. The solution with 0 solution with 0.15 mc. The solution with 0 solution with 0.15 mc.	$0.15 \text{ moles of } \tilde{\text{CH}}_3\text{OH}$	will have the sa	ime vapor pres r vapor pressui	re than the
	water b. NaCl has poor solute by feeble solute-solve c. C ₆ H ₁₄ has good sol are very strong.	ng statements is <u>false</u> ? we solubility in water be ability in CCl ₄ because nt interactions, making ubility in CCl ₄ . Neither low solubility in water	e strong solute-s g things strongly er original nor	olute interaction olute interaction of the condition of t	ons are replaced
27.	If the reaction 2A + 3l law will have the form	$D \rightarrow \text{products}$ is first- n, rate =	order in A and	second-order i	n D, then the rat
	a. k[A][D] e. k[A] ² [D] ²	b. k[A] ² [D] ³	c. k[A][D] ²	d. k[A] ² [D]
28.	A reaction has rate lav	v , rate = $k[A]^2$. What	are the units of	k?	
	a. M/s	b. M ⁻¹ s ⁻¹	c. 1/s	d. 1/M	e. s/M ⁻²
	Consider the reaction is the rate of formation	$A + B \rightarrow 4C$, if the rate of C?	e of disappeara	nce of A is 0.1	6 mol/min, wha
	a. 0.04 mol/min e. none of the above	b. 0.16 mol/min	c. 0.32 mol/n	nin d. 0.0	64 mol/min
30.	What is the rate law for	or the reaction $A + 3B$	→ products		

Initial [A]	Initial [B]	rate
0.273	0.763	3.0
0.273	1.526	3.0
0.273 0.819	0.763	3.0 27.0

a. rate = k[A][B] b. rate = k[A] c. $rate = k[A]^2$ d. $rate = k[A]^3$ e. none of the above

31. What is the rate constant k (ignore units) for the reaction shown, if the reaction is first order in both A and B. $2A + 3B \rightarrow 2C$

Initial [A]	Initial [B]	rate
0.23	0.17	0.33

- a. 8.4
- b. 5.6
- c. 0.67
- d. 0.18

32. What is the rate law for the reaction $2A + 5B \rightarrow products$

Initial [A]	Initial [B]	rate
0.421	0.234	6.4×10^4
0.842	0.234	1.3×10^{5}
0.421	0.468	2.6×10^{5}

- a. rate = k[A][B]
- b. rate = k[B] c. rate = $k[A][B]^2$ d. rate = $k[A][B]^3$
- e. none of the above

33. If the rate law for a reaction is rate = $k[A]^2[B]$, what is the effect on the overall rate of doubling the concentration of both A and B?

- b. rate increases by 4
- c. rate increases by 8

- a. rate increases by 2
 b. rate increases by 4
 d. rate increases by 16
 e. none of the above

34. A \rightarrow B is a first order reaction. If $k = 6.30 \times 10^{-4} \text{ s}^{-1}$, and the initial [A] = 0.100 M, what is [A] after 1000 s?

- a. 0.0533
- b. 0.0234
- c. 0.188
- d. 0.427
- e. 0.000100

35. A \rightarrow B is a first order reaction. What is the rate constant for the reaction (in s⁻¹).

time (sec)	[A](M)
0.0	1.60
5.0	0.80
10.0	0.40
15.0	0.20
20.0	0.10

- a) 0.013
- b) 0.030
- c) 0.14
- d) 3.0

36. For the reaction diagram shown, which of the following statements is true?

Extent of Reaction

- a. Line W represents the H for the forward reaction; point B represents the transition state
- b. Line W represents the activation energy for the forward reaction; point B represents the transition state
- c. Line Y represents the activation energy for the forward reaction; point C represents the transition state
- d. Line X represents the H for the forward reaction; point B represents the transition state
- 37. Given the mechanism shown, what would be the rate law?

2 NO \rightarrow N₂O₂

fast, equilibrium

 $N_2O_2 + Br_2 \rightarrow 2NOBr$

slow

- a. rate = $k[NO]^2[Br_2]$
- b. rate = $k[N_2O_2]^2 [Br_2]$ c. rate = $k[NO]^2[N_2O_2][Br_2]$
- d. rate = $k[NO][Br_2]$
- e. rate = k[NO]
- 38. A catalyst increases the reaction rate by
 - a. always reducing the number of elementary steps in the mechanism
 - b. always making the overall transition state higher in energy
 - c. changing the mechanism to lower the overall activation energy barrier
- 39. In any multistep reaction mechanism, the rate of the overall reaction is determined by the rate of the step in the mechanism.
 - a) first
- b) last
- c) slowest
- d) fastest

40. Which of the following statements is true?

- a. the activation energy always increases as temperature rises
- b. the activation energy always decreases as temperature rises
- c. the rate constant always decreases as temperature rises
- d. the rate constant always increases as temperature rises
- e. the rate constant always increases as the activation energy increases

41. Which of the following statements is false regarding collision theory?

- a. As temperature rises, a higher number of bimolecular collisions result in successful reaction
- b. As the concentration of either chemical increases, the bimolecular collision frequency increases
- c. Not all bimolecular collisions result in successful reactions
- d. Elementary steps are routine that are either termolecular (three molecules colliding at once) or tetramolecular (four molecules colliding at once)

Jasperse Chem 160 Test1 Version 1 Answers

1.	Α		
2.	A		
3.	C		
4.	В		
5.	Ā		
6.	C		
7.	Č		
8.	$\tilde{\mathbf{C}}$		
9.	Ä		
10.			
11.			
12.			
	. C		
14.	. B		
15.	. D		
16.	. B		
17.	. B		
18.	. C		

19. C 20. B 21. C

22. B	
23. B	
24. D	
25. D	
26. D	
27. C	
28. B	
29. D	
30. C	
30. C	
31. A	
32. C 33. C	
33. C	
34. A	
35. C	
36. B	
37. A	
37. A 38. C 39. C	
39. C	
40. D	
41. D	