JASPERSE **CHEM 160** PRACTICE TEST 2 **VERSION 2**

Ch. 14 Chemical Equilibria Ch. 16 Acid-Base Equilibria

Key Equations:

$$[H^+][HO^-] = 1.00 \times 10^{-14}$$
 $pH = -\log[H^+]$ $pH + pOH = 14$

for weak acids:
$$K_a = [H^+]^2/[HA]_{init}$$
 $[H^+] = K_a \cdot [HA]_{init}$

for weak bases:
$$K_b = [OH^-]^2 / [Base]_{init}$$
 $[OH^-] = K_b \bullet [Base]_{init}$

(the above weak acid/base equations assume <5% ionization and assume no alternative source of common ions)

$$K_aK_b = 10^{-14}$$
 for a conjugate acid/base pair

- 1. Which of the following is false about a system at equilibrium:
 - a) The rate of the forward reaction becomes equal to the rate of the reverse reaction
 - b) So long as the equilibrium is not disturbed, the relative amounts of products and reactants present will not change no matter how long you wait
 - c) In an equilibrium situation, interconversion between reactants and products continues to
 - d) The rate constant for the forward reaction becomes equal to the rate constant for the reverse reaction
- 2. Which of the following statements are true, regarding the equilibrium constant K for a reaction and the reaction quotient Q:
 - 1) If Q > K, the reaction is not at equilibrium, and will reach equilibrium by

 - shifting some products over to reactants

 2) If K= 3.2 x 10⁻⁶, the reaction is product favored

 3) If K= 5.2 x 10⁴, the reaction is product favored
 - 4) If Q = K, the reaction is already at equilibrium.
 - a) 1 and 2 only
 - b) 1, 2, and 4 only
 - c) 1, 3, and 4 onlyd) 3 and 4 only

 - e) 2 and 4 only
- 3. Which of the following statements are true regarding equilibrium constants for the following reaction:

$$2 \text{ NH}_3 (g) \iff N_2 (g) + 3H_2 (g)$$
 $H^\circ = +92 \text{ kJ}$

- a) Increasing the volume of the container will increase the equilibrium constant
- b) Increasing the temperature of the reaction will increase the equilibrium constant
- c) Increasing the volume of the container will increase the concentration of NH₃ (g)
- d) Increasing the concentration of H₂ (g) will increase the equilibrium constant
- e) Increasing the concentration of NH₃ (g) will increase the equilibrium constant

4. Identify the correct equilibrium expression for the following reaction.

$$A (aq) + 2B (aq) \leftrightarrows C (aq) + D (s)$$

- a) [A] [B]² / [C] [D]
- b) [C] [D] / [A] [B]²
- c) [A] [B]² / [C]
- d) $[C]/[A][B]^2$
- 5. For the following reaction, determine whether the system is at equilibrium when [CO] = 0.50M and $[CO_2] = 0.75$ M. The system _____ at equilibrium, because _____

$$C(s) + CO_2(g) = 2CO(g)$$

 $K_{c} = 168$

- a) Is; the value of Q is 0.33
- b) Is not; the value of Q is 0.33
- c) Is; the value of Q is 0.67
- d) Is not; the value of O is 0.67
- e) More information is needed to answer this question
- 6. What is the equilibrium constant K_c for the following reaction, if at equilibrium $[C_4H_{10}] =$ $0.018 \text{ M}, [C_2H_6] = 0.035 \text{ M}, \text{ and } [C_2H_4] = 0.035 \text{ M}$?

$$C_4H_{10}(g) \iff C_2H_6(g) + C_2H_4(g)$$

- a) 0.068
- b) 0.13
- c) 14
- d) 2.2 x 10⁻⁵
- 7. What is the equilibrium concentration of N_2O (g) (in moles/liter), if at equilibrium $[N_2] = 0.048$ M and $[O_2] = 0.093 \text{ M}?$

$$2N_2(g) + O_2(g) \iff 2 N_2 O(g)$$
 $K_c = 1.5 \times 10^{-30}$

- a) 8.2×10^{-17}
- b) 1.8 x 10⁻¹⁷
- c) 4.7 x 10⁻²⁷ d) 3.4 x 10⁻²⁸ e) 3.2 x 10⁻³⁴

8. When 1.00 mol NH₃ (g) was placed into a 1 L container and allowed to reach equilibrium, the resulting mixture contained 0.60 mol NH₃ (g). How many moles of N₂ (g) and H₂ (g) are present at equilibrium?

$$2 NH_3(g) = N_2(g) + 3H_2(g)$$

- $\begin{array}{lll} a) & 0.40 \text{ moles of } N_2 \ ; & 1.20 \text{ moles of } H_2 \\ b) & 0.80 \text{ moles of } N_2 \ ; & 2.40 \text{ moles of } H_2 \ (g) \\ c) & 0.20 \text{ moles of } N_2 \ ; & 0.60 \text{ moles of } H_2 \ (g) \\ d) & 0.80 \text{ moles of } N_2 \ ; & 0.27 \text{ moles of } H_2 \ (g) \\ e) & 0.20 \text{ moles of } N_2 \ ; & 0.40 \text{ moles of } H_2 \ (g) \\ \end{array}$
- 9. 0.50 mol of I₂ (g) and 0.50 mol of Br₂ (g) are placed in a 1.00 L flask and allowed to reach equilibrium. At equilibrium, the flask contains 0.84 mol of IBr. What is the value of K_c for this reaction?

$$I_2(g) + Br_2(g) - 2IBr(g)$$

- a) 11
- b) 4.0
- c) 110
- d) 6.1
- 10. When 0.70 mol NO₂ was placed in a 1.00 L flask and allowed to reach equilibrium, it's concentration was found to be 0.28 M, once equilibrium was established. Calculate K_c for this reaction.

$$2NO_2(g) = 2NO(g) + O_2(g)$$

- a) 1.9
- b) 0.94
- c) 0.47
- d) 0.14
- 11. Calculate the equilibrium concentration of CO (g) and Cl₂ (g) if the initial concentration of COCl₂ (g) was 0.0627 M.

$$COCl_2(g) \iff CO(g) + Cl_2(g) \qquad K_c = 2.73 \times 10^{-10}$$

- a) $2.30 \times 10^8 \text{ M}$
- b) 1.52 x 10⁻⁴ M c) 2.03 x 10⁻³ M d) 4.14 x 10⁻⁶ M e) 1.71 x 10⁻¹¹ M

12. Consider the following reaction at equilibrium. Adding N₂ (g) to this reaction will:

$$2 \text{ NH}_3 (g) \iff N_2 (g) + 3H_2 (g)$$
 $H^\circ = +92 \text{ kJ}$

- a) Decrease the concentration of NH₃ (g) at equilibrium
- b) Decrease the concentration of H₂ (g) at equilibrium
- c) Increase the value of the equilibrium constant
- d) Cause the reaction to shift to the right

13. Given the following equilibrium, which of the following statements is true?

$$C(s) + CO_2(g) = 2CO(g)$$
 $H^\circ = +143 \text{ kJ}$

- a) An increase in temperature will cause a shift in the equilibrium position to the left
- b) An increase in the concentration of CO₂ (g) will cause the concentration of CO (g) to decrease
- c) An increase in the amount of carbon will cause the amount of CO (g) to increase
- d) An increase in temperature will make the equilibrium constant get larger
- e) A reduction in volume will cause a shift in the equilibrium position to the right

14. What would be the effect of reducing the volume for the following system, once equilibrium was reestablished:

$$N_2(g) + 3H_2(g) + 2NH_3(g)$$
 $H^\circ = +92 \text{ kJ}$

- a) Decrease the number of moles of NH₃ (g) at equilibrium
- b) Decrease the number of moles of H, (g) at equilibrium
- c) Decrease the value of the equilibrium constant
- d) Cause the reaction to shift to the left

15. The $[H^+]$ and pH of 0.021 M HNO₃ are:

- a) 4.8 x 10⁻¹³ M and 12.32
- b) 0.021 M and 12.32
- c) 0.021 M and 1.68
- d) 0.021 M and -1.68 e) 4.8 x 10⁻⁶ M and 5.32

16. Calculate the hydronium ion concentration in a 0.012 M aqueous solution of NaOH.

- a) $7.8 \times 10^{-4} \text{ M}$
- b) 5.5 x 10⁻¹³ M c) 5.6 x 10⁻¹³ M d) 8.3 x 10⁻¹³ M
- e) none of the above

- 17. What is the $[OH^{-}]$ concentration of a solution with pH = 4.50?
 - a) $3.2 \times 10^{-5} M$

 - b) 8.2 x 10⁻⁹ M c) 8.3 x 10⁻¹⁰ M d) 3.2 x 10⁻¹⁰ M

 - e) none of the above
- 18. A 0.55 M solution of the weak acid HBrO has a pH of 4.48. What is the value of $K_{\rm a}$ for HBrO?
 - a) 2.0 x 10⁻⁹ M b) 1.1 x 10⁻⁹ M

 - c) 6.0 x 10⁻⁵ M d) 3.3 x 10⁻⁵ M

 - e) none of the above
- 19. Calculate the pH of 0.020 M hypochlorous acid, $K_a = 3.0 \times 10^{-8}$.
 - a) 2.45
 - b) -2.45
 - c) 3.60
 - d) 9.22
 - e) 4.61
- 20. The basicity constant K_b for $C_6H_5NH_2 = 4.3 \times 10^{-10}$. Calculate the pH of a 0.15 M solution of C₆H₅NH₃⁺ in water.
 - a) 11.3
 - b) 8.6
 - c) 5.2
 - d) 2.7
 - e) none of the above
- 21. Calculate the pH of a 0.20 M solution of $C_4H_5NH_2$ in water. The basicity constant K_b for $C_4H_5NH_2=3.5 \ x \ 10^{-6}$.
 - a) 3.1
 - b) 4.9
 - c) 10.9
 - d) 9.6
 - e) none of the above

22. The K_a for HF is 7.0 x 10⁻⁴. What is the value of K_b for NaF?

- a) 2.0×10^{-8}
- b) 1.4 x 10⁻¹¹
- c) 7.0×10^{-18}
- d) 1.4 x 10⁻¹⁰

e)

23. Calculate the pH of 0.374 M solution of NaNO₂ (K_a for HNO₂ = 4.5 x 10⁻⁴).

- a) 8.5
- b) 1.9
- c) 0.013
- d) 12.1
- e) none of the above

24. Which one of the following is the strongest acid?

- a) $CH_3COOH(K_a = 1.8 \times 10^{-5})$
- b) HCOOH ($K_a = 1.0 \times 10^4$) c) HClO ($K_a = 3.0 \times 10^{-8}$) d) HF ($K_a = 6.8 \times 10^{-4}$)

25. What is the conjugate acid of C₄H₇NH₂?

- a) $C_4H_7NH^+$
- b) $C_4H_7NH^2$
- c) $C_4H_7NH_3$
- d) $C_4H_7NH_3$

26. Which one of the following 0.1 M solutions would have a pH of 7.0?

- a) Na₂S
- b) CoCl₃
- c) NaNO₃
- d) NH₄Cl
- e) None of these

27. Given the K_a values shown, which one of the anions shown is the strongest base?

$$\begin{array}{ll} \text{CH}_3\text{COOH}\ (K_a = 1.8 \ x \ 10^{\text{-5}}) & \text{HCOOH}\ (K_a = 1.0 \ x \ 10^{\text{-4}}) \\ \text{HClO}\ (K_a = 3.0 \ x \ 10^{\text{-8}}) & \text{HF}\ (K_a = 6.8 \ x \ 10^{\text{-4}}) \end{array}$$

- a) CH₃COO
- b) HCOO
- c) ClO
- d) F

28. For the reaction shown, which of the following statements would be false?

$$H_2CO_3$$
 (aq) + CH_3COO^- (aq) $\leftrightarrows CH_3COOH$ (aq) + HCO_3^- (aq) $K = 2.3 \times 10^{-2}$

- a) CH₃COOH is the strongest acid
- b) HCO₃ anion is the strongest base
- c) H_2CO_3 is the strongest acid
- d) The solution will contain more H₂CO₃ than CH₃COOH at equilibrium
- 29. Which of the following would give an acidic solution in water?
 - a) NaCN
 - b) KF
 - c) NH₃
 - d) CH₃COOH
- 30. Rank the relative basicity of NH₃, OH, F, HSO₄, given the following acidity data:

$$NH_4^+$$
 ($K_a = 1.8 \times 10^{-5}$) HF ($K_a = 7.2 \times 10^{-4}$)

- a) $OH^{-} > NH_{3} > HSO_{4}^{-} > F^{-}$
- b) $OH^{-} > F^{-} > NH_{3} > HSO_{4}^{-}$
- c) HSO₄ > F > NH₃ > OH
 d) OH > NH₃ > F > HSO₄
 e) None of the above

- 31. Which of the following would not give an acidic solution?
 - a) H₂S
 - b) NH₄Cl
 - c) NaNO₂
 - d) FeCl₃
 - e) None of these
- 32. Which of the following acidity relationships is true?
 - a) $H_2SO_3 > H_2SO_4$ b) $H_2PO_4 > HPO_4^{2-}$

 - c) $HF > HClO_4$
 - d) H₂CO₃ > HNO₃ e) None of these
- 33. For the reaction shown, which of the following statements would be false?

$$H_2SO_3$$
 (aq) + HS^- (aq) \Rightarrow HSO_3^- (aq) + H_2S (aq)

- a) H_2SO_3 and H_2S are acids
- b) HS and HSO3 are bases
- c) The equilibrium will favor the side with the weaker acid and the weaker base
- d) H₂SO₃ and HS are a conjugate acid/base pair

Jasperse Chem 160 Answers, Test2 Version 2

- 1. D 2. C 3. B
- 4. D 5. B

- 6. A 7. B 8. C 9. C 10. C
- 11. D
- 12. B 13. D 14. B

- 15. C 16. D
- 17. D
- 18. A
- 19. E 20. D
- 21. C
- 22. B 23. A
- 24. D
- 25. D

- 25. D 26. C 27. C 28. C 29. D 30. D 31. C

- 32. B
- 33. D