VERSION 2

Ch. 17: Additional Aqueous Equilibria

Ch. 18: Thermodynamics: Directionality of Chemical Reactions

Key Equations:

for weak acids alone in water:	[H ⁺] =	K _a •[HA]	
for weak bases alone in water:	[OH ⁻] =	Kb•[B] _{init}	
pZ= -logZ (general definition for p of anything)			
$[H^+][HO^-] = 1.00 \text{ x } 10^{-14}$	pH + pC	DH = 14	
$K_aK_b = 1.00 \times 10^{-14}$ for a conjugate acid/base pair			
for Buffers: $pH = pK_a + log[base]/[$	acid] I	Henderson-Hasselbalch Equation	
$S^{\circ} = S^{\circ}$ (products) – S° (reactants)			
$G^{\circ} = G^{\circ} (products) - G^{\circ} (reactants)$)		
$G^{\circ} = H^{\circ} - T S^{\circ}$ (T in Kelvin)			

- 1. A solution containing which one of the following pairs of substances could be a buffer?
 - a. NaI, HI
 - b. KBr, HBr
 - c. NH_4Cl, HCl
 - d. KOCl, HOCl
 - e. None of the above
- 2. Determine the pH of a solution prepared by mixing 45 mL of 0.183 M KOH with 65 mL of 0.145 M HCl
 - a. 1.31
 - b. 2.92
 - c. 0.74
 - d. 1.97
 - e. none of the above
- 3. Consider a solution prepared by dissolving 0.35 mol of CH₃NH₃Cl (methylamine hydrochloride) in 1.00 L of 1.1 M CH₃NH₂ (methylamine). If 10 mL of 0.10 M HCl is added to this buffer solution, the pH of the solution will ______ slightly because the HCl reacts with the ______ present in the solution.
 - a. Increase, $CH_3NH_3^+$
 - b. Increase, $CH_3^3NH_2^3$
 - c. Decrease, CH_3NH_2
 - d. Decrease, $CH_3NH_3^{++}$

- 4. Consider a solution containing 0.80 M NaF and 0.80 M HF. Calculate the <u>moles of HF</u> and the <u>concentration of HF</u> after addition of 20.0 mL of 0.40 M HCl to 60.0 mL of this buffer solution.
 - a. 0.056 moles, 0.70 M
 - b. 0.056 moles, 0.93 M
 - c. 0.048 moles, 0.60 M
 - d. 0.040 moles, 0.67 M
 - e. none of the above.
- 5. What change will be caused by addition of 0.10 moles of HNO_3 to a 1 liter solution containing 0.50 moles of KF and 0.50 moles of HF?
 - a. The concentration of hydronium ion will significantly increase, and the pH will drop by several pH units
 - b. The concentration of fluoride will increase as will the concentration of hydronium ion
 - c. The concentration of HF will be decreased and the concentration of fluoride will be increased
 - d. The concentration of fluoride will be decreased and the concentration of HF will be increased
 - e. The fluoride ion will precipitate out of solution
- 6. What will be the pH if 0.20 moles of NaOH is added to a 1.0 L solution originally containing 0.60 moles of HNO₂ and 0.40 moles of NaNO₂? (HNO₂ $K_a = 4.5 \times 10^{-4}$)
 - a. 2.31
 - b. 3.17
 - c. 3.52
 - d. 8.97
 - e. none of the above
- 7. Determine the pH of a solution prepared by mixing 40.0 mL of 0.60 M HCl with 80.0 mL of 0.30 M NaOCl (HOCl $K_a = 3.5 \times 10^{-8}$)
 - a. 2.3
 - b. 5.6
 - c. 4.1
 - d. 9.3
 - e. none of the above

- 8. Which of the following statements is false, regarding a solution containing 0.20 moles of the weak acid HOCl.
 - a. Adding NaOH will both increase the dissociation of HOCl, and decrease $[H^+]$
 - b. Adding HCl will both decreased the dissociation of HOCl and decrease [OCl⁻]
 - c. Adding NaOCl will both increase the dissociation of the original HOCl, and will increase [H⁺]
 - d. Adding NaCl will not affect either the dissociation of the original HOCl or the solution pH
- 9. If the solid CuF₂ has a solubility of 0.0020 mol/L, what is the value of K_{sp} ?
 - a. 1.8 x 10⁻⁷
 - b. 4.0 x 10⁻⁶
 - c. 3.2×10^{-8}
 - d. 8.0 x 10⁻⁹
 - e. none of the above
- 10. Calculate the pH of a solution containing 0.818 M acetic acid ($K_a = 1.76 \times 10^{-5}$) and 0.172 M sodium acetate.
 - a. 4.08
 - b. 5.43
 - c. 8.57
 - d. 8.37
- 11. Determine the pH of a solution prepared by mixing 40 mL of 0.30 M KOH with 30 mL of 0.40 M HCl.
 - a. 6.3
 - b. 7.0
 - c. 8.1
 - d. 5.8
 - e. none of the above
- 12. Which of the following combinations would give a pH of lower than 7.00 at the "equivalence point" (when equal moles of each have been added)
 - a. $HClO_4 + NaF$
 - b. $HNO_3^{-} + KOH$ c. $NH_4Cl + NaOH$

 - d. HF + NaOH
 - e. None of the above

- 13. An initial pH of 10.7 and an equivalence point at pH = 4.5 corresponds to a titration curve for a
 - a. Strong acid to which strong base is added
 - b. Strong base to which strong acid is added
 - c. Weak acid to which strong acid is addedd. Weak base to which strong acid is added

 - e. Weak base to which strong base is added
- 14. In a titration experiment it was found that a 50.0 mL sample of HNO₃ required 66.0 mL of 0.80M NaOH to reach the equivalence point. What was the molarity of the HNO₃ sample?
 - a. 0.61 M
 - b. 0.86 M
 - c. 1.06 M
 - d. 1.24 M
 - e. none of the above
- 15. How many mL of 0.48 M NaOH will it take to neutralize 36 mL of 0.40 M HCl?
 - a. 43 mL
 - b. 30 mL
 - c. 69 mL
 - d. 14 mL
 - e. none of the above
- 16. Hydrazoic acid HN₃ has $K_a = 2.0 \times 10^{-5}$. What is the concentration of the azide anion N₃⁻ in a solution that is 0.50M in HN₃ and 0.40M in HNO₃?
 - a. 3.5 x 10⁻³
 - b. 2.5 x 10⁻⁵
 - c. 2.0 x 10⁻⁶
 - d. 8.0×10^{-6}
 - e. none of the above
- 17. Which of the following salts would have it's solubility influenced by pH, such that solubility increases at low pH?
 - a. $Ca(NO_3)_2$
 - b. CaF_{2}
 - c. CaCl₂
 - d. $CaBr_{2}$
 - e. Cal,

- 18. Calculate the concentration of iodide ions in a saturated solution of PbI_2 (K_{sp} = 1.4 x 10⁻⁸)
 - a. 1.5 x 10⁻³ M b. 3.0 x 10⁻³ M
 - c. $4.2 \times 10^{-2} M$
 - d. 3.5 x 10⁻⁹ M
 - e. none of the above
- 19. KCN is completely soluble. What would be the molar solubility of AgCN when added to a solution that was 0.010 M in KCN, if $K_{sp} = 1.2 \times 10^{-16}$ for AgCN?
 - a. 5.2 x 10⁻¹¹ M
 - b. 1.1 x 10⁻⁸ M

 - c. 1.2 x 10⁻¹⁴ M
 d. 4.6 x 10⁻¹³ M
 - e. none of the above
- 20. Which one of the following substances, when added to a saturated solution of Pb(OH)₂, will decrease the solubility of $Pb(OH)_2$ in the solution?
 - a. $NaNO_3$ b. H_2O_2

 - c. HÑÕ₃
 - d. $Pb(NO_3)_3$
- 21. Which of the following reactions would have a positive value for S° ?
 - a. $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$
 - b. $2NO_2(g) \rightarrow N_2O_4(g)$
 - c. $BaF_2(s) \rightarrow Ba^{+2}(aq) + 2F(aq)$
 - d. $H^+(aq) + F^-(aq) \rightarrow HF(aq)$
- 22. Calculate the entropy for Cl_2 (g) (in J/mol•K), given the overall S° for the following reaction, and the available S° values tabulated:

2NO (g) + Cl₂ (g) \rightarrow 2NOCl (g) S° = -117 J/mol•K

Substance	S°
NO (g)	211
$NO_2(g)$	240
NOCI (g)	264
$N_2O(g)$	220

- a. 106
- b. 11

c. 223

d. -223

- 23. Which of the following would have the greatest entropy?
 - a. $C_{3}H_{8}O(l)$ at 20°C b. $C_{5}H_{12}(g)$ at 20°C c. $C_{3}H_{8}(l)$ at 80°C d. $C_{4}H_{10}(g)$ at 80°C e. $C_{5}H_{12}(g)$ at 80°C
- 24. What is the value of S° (in J/mol•K) for this reaction at 25°C?

```
C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)
```

Given: $G^\circ = +91 \text{ kJ/mol}$ $H^\circ = +131.4 \text{ kJ/mol}$

- a. -136
- b. 1.6
- c. -1.6
- d. 136
- e. none of the above
- 25. Which of the following statements is <u>false</u>?
 - a. The driving force behind the expansion of a gas is the dispersal of matter
 - b. Exothermic reactions are often product-favored because energy is dispersed to the surrounding
 - c. The entropy of the universe is increasing, but the enthalpy of the universe is constant
 - d. Both the entropy and the enthalpy of the universe are constant
- 26. Consider a pure, crystalline solid being heated from absolute zero to some very high temperature. Which one of the following processes produces the greatest increase in the entropy of the substance?
 - a. Melting the solid
 - b. Heating the liquid
 - c. Heating the gas
 - d. Heating the solid
 - e. Boiling the liquid
- 27. Based on your knowledge of chemical reactions, which of the following processes has a <u>negative</u> standard free energy change at 25°C

Reaction 1: $2Na + Cl_2 \rightarrow 2NaCl$ Reaction 2: $2H_2 + O_2 \rightarrow 2H_2O$ Reaction 3: $H_2O(1) \rightarrow H_2O(s)$ at 25°C

- a. Reaction 1 only
- b. Reaction 2 only
- c. Reaction 3 only
- d. Reactions 1 and 2 only
- e. Reactions 1 and 3 only

- 28. For a reaction to be product favored at high temperature but not at low temperature, what must be true for the signs of H° and S° ?
 - a. Both are positive
 - b. Both are negative
 - c. H° is positive and S° is negative
 d. H° is negative and S° is positive
- 29. What is the value for G° , at 25°C?

A (aq) + B (aq)
$$\rightarrow$$
 C (g) + D (aq)
B[°] = -54.0 kJ/mol
S[°] = +87.0 J/mol•K

- a. –65 kJ/mol
- b. -80 kJ/mol
- c. +2.6 x 10⁴ kJ/mol d. -56 kJ/mol
- e. none of the above
- 30. Calculate the G° (in kJ/mol) for the following reaction, given the tabulated G_{f}° values:

$$C_4H_6(g) + 2H_2O(g) \rightarrow C_4H_8(OH)_2(l)$$

Substance	G_{f}° (kJ/mol)
$\overline{C_4 H_6(g)}$	-23
$H_2O(g)$	-229
$C_{4}^{2}H_{8}(OH)_{2}$ (1)	-522

- a. -41
- b. -270
- c. +48
- d. +322
- e. none of the above
- 31. Under which temperature conditions will the following reaction be product favored?

A (aq) + B (aq)
$$\rightarrow$$
 C (s) + D (aq)
B[°]= -34.0 kJ/mol
S[°]= -57.0 J/mol•K

- a. Above 273°C
- b. Below 323°C
- c. Above 552°C
- d. Below 705°C
- e. At all temperatures

- 32. Which of the following statements is <u>false</u>?
 - a. For a reaction at equilibrium, G = 0 in every case
 - b. All reactions in which the entropy of the universe increases are product-favored
 - c. All reactions in which the entropy of the system increases are product-favored
 - d. Some reactions that are product-favored at room temperature may not be product-favored at higher temperatures.
 - e. It is possible for a reactant-favored process to proceed to the product side, but only if it is continuously fueled by some other source of free energy, such that the combined G is negative and the overall entropy of the universe still increases
- 33. The conversion of solid CO_2 ("dry ice") to CO_2 gas is product-favored at room temperature. What would be the signs for G, H, and S at room temperature?

 $\text{CO}_2(s) \rightarrow \text{CO}_2(g)$

- a. G is positive, H is positive, and S is positive
- b. G is negative, H is positive, and S is positive
- c. G is positive, H is positive, and S is negative
- d. G is negative, H is negative, and S is positive
- e. G is negative, H is positive, and S is negative

Jasperse Chem 160 Answers, Test3 Version 2

1. D	18. B
2. D	19. C
3. C	20. D
4. A	21. C
5. D	22. C
6. C	23. E
7. C	24. D
8. C	25. D
9. C	26. E
10. A	27. D
11. B	28. A
12. A	29. B
13. D	30. A
14. C	31. B
15. B	32. C
16. B	33. B
17. B	