JASPERSE CHEM 160 PRACTICE TEST 4 VERSION 2 Ch. 19 Electrochemistry Ch. 20 Nuclear Chemistry Formulas: $E^{\circ}_{cell} = E^{\circ}_{reduction} + E^{\circ}_{oxidation}$ $G^{\circ} = -nFE^{\circ}_{cell}$ (for kJ, use F = 96.5) $E_{cell} = E^{\circ} - [0.0592/n]\log Q$ $\log K = nE^{\circ}/0.0592$ Mol $e^{-} = [A \cdot time (sec)/96,500]$ time (sec)= mol $e^{-} \cdot 96,500$ /current (in A) $t = (t_{1/2}/0.693) \ln (m_{o}/m_{t})$ $\ln (m_{o}/m_{t}) = (0.693/t_{1/2}) \cdot t$ $E = mc^{2}$ (m in kg, E in J, c = 3x10⁸ m/s)

- 1. What is the oxidation number of Mn in $KMnO_4$?
 - a. +3
 - b. +6
 - c. +7
 - d. +12
 - e. none of the above
- 2. After balancing the following redox reaction, what is the coefficient for H_2O ?

 $\mathbf{H}^{+} + \mathbf{H}_{2}\mathbf{CrO}_{4} + \mathbf{I}^{-} \rightarrow \mathbf{Cr}^{3+} + \mathbf{I}_{2} + \mathbf{H}_{2}\mathbf{O}$

- a. 2 b. 6
- c. 8
- d. 16
- e. none of the above
- 3. Balance the following reaction. How many electrons are transferred <u>in the balanced reaction</u>? (Remember, coefficients must be whole numbers, not fractions.)

$$Al + Br_2 \rightarrow AlBr_3$$

- a. 1
- b. 3
- c. 6 d. 8
- e. none of the above
- 4. Given the following reduction potentials, what would function as the <u>reducing agent</u> in a product–favored cell involving these chemicals?

$$Ag+ + e- → Ag Ni2+ + 2e- → Ni E° = -0.28 V$$

- a. Ni
 b. Ni²⁺
- $\begin{array}{c} \mathbf{U}, \quad \mathbf{INI} \\ \mathbf{a}, \quad \mathbf{A} \mathbf{a}^+ \end{array}$
- c. Ag^+
- d. Ag

- 5. Which of the following statements about electrochemical cells is true?
 - a. Oxidation occurs at the cathode
 - b. Reduction occurs at the anode
 - c. The oxidation half-reaction and the reduction half-reaction need not be separated
 - d. To produce current, the oxidation half-cell and the reduction half-cell must be connected by an external circuit
 - e. None of the above
- 1. What is G° for the following balanced reaction?

$$Cu + 2NO_3^- + 4H^+ \rightarrow Cu^{2+} + 2NO_2 + 2H_2O$$
 $E^\circ = +0.46 V$

 $2Ag^+ + Fe \rightarrow 2Ag + Fe^{2+} E^\circ = ??$

- a. -44 kJ/mol
- b. -89 kJ/mol
- c. 1000 kJ/mol
- d. -1400 kJ/mol
- e. none of the above
- 7. Which of the following should be true for any product–favored electrochemical reaction?
 - a. $G^{\circ} = 0, E^{\circ} = 0, and K > 1$ b. $G^{\circ} < 0, E^{\circ} > 0, and K > 1$ c. $G^{\circ} > 0, E^{\circ} < 0, and K < 1$ d. $G^{\circ} > 0, E^{\circ} < 0, and K < 1$ e. $G^{\circ} < 0, E^{\circ} > 0, and K > 1$
- 8. Given the following reduction potentials, what would be E° for the reaction shown?

$Ag^+ + \epsilon$	e⁻ → Ag	$E^{\circ} = +0.80 V$	
$Fe^{2+} + 2$	$2e^{-} \rightarrow Fe$	$E^{\circ} = -0.44 V$	
a.	0.36 V		
b.	1.16 V		
с.	1.24 V		
d.	2.04 V		
e.	none of the ab	oove	

- 9. Molten KF is subjected to electrolysis. Fluorine gas, F_2 , is produced at electrode A. Which of the following is true?
 - a. Electrode A is the cathode
 - b. Electrode B is the anode
 - c. Oxidation occurs at electrode B
 - d. Reduction occurs at electrode B
 - e. None of the above

10. What is K for the following unbalanced reaction, given that the reduction potentials for Ag⁺ and Cu^{2+} are +0.80 and +0.34 V.

 $Ag^{+}(aq) + Cu(aq) \rightarrow Ag(s) + Cu^{2+}(aq)$

- a. 3.47 x 10¹⁵
- b. 6.94×10^{15}
- c. 1.73×10^{15} d. 2.48×10^{13}
- e. none of the above
- 11. Given the reduction potential for water, which of the following metals maybe produced by electrolysis in aqueous solution? The standard reduction potentials of the metal ions are listed:
 - $\frac{Sn^{2+}-0.16V}{Zn^{2+}},-0.76~V$ $\begin{array}{c} Mn^{2+}, -1.18V\\ Mg^{2+}, -2.38\\ Li^{+}, -3.04 \end{array} V$

$$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^- E^\circ = -0.83 V$$

- a. Lithium only
- b. Tin only
- c. Both tin and zinc
- d. magnesium, lithium and manganese
- e. both lithium and tin
- 12. Given the following reduction potentials, what would be the E° for a cell for a product–favored reaction involving the chemicals shown?
 - $\begin{array}{ccc} \text{Cl}_2 + 2e^- \rightarrow 2\text{Cl}^- & \text{E}^\circ = +1.32 \text{ V} \\ \text{Cr}^{3+} + 3e^- \rightarrow \text{Cr} & \text{E}^\circ = -0.74 \text{ V} \end{array}$

- a. 2.1V
- b. 4.9 V
- c. 0.58 V
- d. 1.72 V
- e. none of the above
- 13. What is the actual E, given the following concentrations?

$$3Ag(s) + Au^{3+} (aq) \rightarrow Au (s) + 3Ag^{+} (aq) \qquad E^{\circ} = +0.70 V$$

0.10 M 2.2 M

- a. 0.72 V
- b. 0.63 V
- c. 0.81 V
- d. 0.66 V
- e. none of the above

14. Which transformation could take place at the anode of an electrochemical cell?

a. Mn^{2+} to Mnb. H_2O to O_2 c. $H_2^2 SO_4$ to $H_2 S_2 O_3$ d. Br_2 to Br^-

e. none of the above

15. Given the following reduction potentials, which species would react with Cu^{2+} ?

$Br_2 + 2e^- \rightarrow 2Br^-$	$E^{\circ} = +1.08 V$
$I_2 + 2e^- \rightarrow 2I^-$	$E^{\circ} = +0.54 V$
$\tilde{\mathrm{Cu}}^{2+} + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}$	$E^{\circ} = +0.34 V$
$2H^+ + 2e^- \rightarrow H_2$	$E^{\circ} = 0.0 V$
$Ni^{2+} + 2e^{-} \rightarrow N\bar{i}$	$E^{\circ} = -0.28 V$

- a. Ni only
- b. Ni and H_2 only
- c. Br^- and I^- only d. $Br_2 + I_2$ only
- e. none of the above
- 16. The reduction potentials for Sn^{2+}/Sn and Fe^{2+}/Fe are -0.16 and -0.44. Which of the following substances will be oxidized most easily?
 - a. Sn^{2+}
 - b. Sn
 - c. Fe^{2+}
 - d. Fe
- 17. How many grams of Fe metal (55.85 g/mol) will be produced by passing a current of 3.2 amps through a solution of FeI₂ for 48 minutes.
 - a. 2.96 x 10⁻² g b. 1.78 g c. 2.2 g d. 4.4 g e. none of the above
- 18. Based on the periodic table and general patterns of activity, which of the following would react with metallic sodium?

CaBr₂ AlCl₃ FeCl₂ CuBr₂

- a. $CaBr_2$ and $AlCl_3$ only
- b. $CuBr_2$ only
- c. AlCl₃ and FeCl₂ and CuBr₂ only
- d. none of them would react
- e. all of them would react

19. A cell is constructed in which copper is one of the electrodes, and in which the overall E° is 1.10 V. Given the following standard reduction potentials, identify which metal is involved in the other half reaction.

Reduction Potentials				
$Ag^{+} \rightarrow Ag$	+0.80 V			
$Cu^{2+} \rightarrow Cu$	+0.34 V			
$Fe^{2+} \rightarrow Fe$	–0.41 V			
$Zn^{2+} \rightarrow Zn$	–0.76 V			
$Mn^{2+} \rightarrow Mn$	–1.18 V			

- a. Ag b. Fe
- c. Mn
- d. Zn
- 20. Which of the following correctly ranks the "activity" (strength as reducing agents) of the metallic elements W, X, Y and Z, given the following observed reactivity information?

 $W + XCl_2 \rightarrow X + WCl_2$ W + YCl_2 \rightarrow no reaction Z + YCl_2 \rightarrow Y + ZCl_2

- a. Z > Y > W > X
- b. X > W > Y > Z
- c. Y > W > Z > X
- d. W > Y > X > Z
- e. none of the above
- 21. For an electrochemical cell, the standard reduction potentials are -0.14 V for Sn²⁺ and -0.25 V for Ni²⁺. Based on the reduction potentials, the ______ electrode is where the reduction will occur and it is called the ______.
 - a. Sn, cathode
 - b. Sn, anode
 - c. Ni, cathode
 - d. Ni, anode
 - e. none of the above

22. Which particle/ray is emitted in the following reaction?

 121 I \rightarrow 121 Te + _____

- a. alpha
- b. beta
- c. neutron
- d. positron
- e. gamma

23. The following reaction is an example of _____ decay: $Po-210 \rightarrow Pb-206$

- a. alpha
- b. beta
- c. neutron
- d. positron
- e. gamma

24. Bombardment of U-238 with a single neutron generates Sr-90, 5 neutrons, and:

- a. ¹⁴⁴Xe b. ¹⁴⁴Nd c. ¹⁴⁶Xe d. ¹⁵²Sn e. ²²⁸Pa
- 25. What is the missing particle from the reaction shown, an important reaction by which C-14 is $^{14}N \rightarrow {}^{14}C + {}^{1}H$ generated in the atmosphere:
 - a. beta emission
 - b. bombardment by a neutron
 - c. electron capture
 - d. neutron emission
 - e. bombardment by an alpha particle
- 26. The half-life for beta decay of Sr-90 is 28.8 years. A sample is found to contain 10.3 mg Sr-90. How many years would pass before the Sr-90 quantity would drop to 1.0 mg?
 - a. 92.3
 - b. 0.112
 - c. 186
 - d. 96.9
 - e. 131
- 27. I-131 has a half-life of 8.04 days. Assuming you start with a 2.35 mg sample, how much will remain after 15.0 days?
 - a. 0.835 mg
 - b. 0.645 mg
 - c. 0.542 mg

 - d. 0.440 mg e. none of the above

28. What is the binding energy in kJ/mol for $\frac{52}{24}$ Cr, given the following respective masses?

	Proton: 1.00783	Neutron: 1.00867	Cr-52: 52.0010
a.	5.09 x 10 ¹⁰ kJ/mol		
b.	$3.69 \text{ x } 10^{13} \text{ kJ/mol}$		
c.	3.87 x 10 ¹⁰ kJ/mol		
d.	4.22 x 10 ¹⁰ kJ/mol		
e.	none of the above		

- 29. The basis for the carbon–14 dating method is that
 - a. the amount of C-14 in all objects is the same
 - b. carbon-14 is very unstable and decays very rapidly
 - c. the ratio of C-14 to C-12 in the atmosphere is a constant, and thus is also constant in living things
 - d. living tissue will not absorb any carbon-14 but will absorb carbon-12
- 30. Consider the following nuclides: which would you expect to be radioactive?

$$\frac{44}{19}$$
K $\frac{27}{13}$ Al $\frac{127}{53}$ I $\frac{232}{90}$ Th

- a. K–44 only
- b. Both Al-27 and I-127 only
- c. Th-232 only
- d. Both K-44 and Th-232 only
- e. All four nuclides
- 31. Fact: ²⁴Na is unstable and radioactive. Is its n/p ratio too high or too low? In that case, which process could lead to stability? (Make sure that both parts of the answer are correct.)
 - a. Its n/p ratio is too low. It could attain stability by electron capture only
 - b. Its n/p ratio is too low. It could attain stability by beta emission.
 - c. Its n/p ratio is too high. It could attain stability by electron capture or positron emission.
 - d. Its n/p ratio is too high. It could attain stability by beta emission.
 - e. Its n/p ratio is too high. It could attain stability by positron emission.
- 32. Which of the following statements is true for a ${}^{34}S^{2-}$ anion?
 - a. it has 16 protons, 14 electrons, and 18 neutrons
 - b. it has 34 protons, 18 electrons, and 34 neutrons
 - c. it has 16 protons, 16 electrons, and 34 neutrons
 - d. it has 16 protons, 18 electrons, and 18 neutrons
 - e. none of the above
- 33. Which of the following processes would <u>not</u> change the atomic number by one (would not either increase the atomic number by one or decrease the atomic number by one?)
 - a. alpha emission only
 - b. beta emission only
 - c. gamma emission only
 - d. positron emission only
 - e. electron capture only
 - f. alpha and gamma emission only

34. Which of the following statements is false?

- a. Nuclear reactions often involve large amounts of energy, because mass is interconverted into energy in the process
- b. The reason that nuclides with multiple protons can hold together is because some missing mass is converted into a strong nuclear binding force/energy, which more than makes up for proton–proton repulsion
- c. The half-lives for radioactive nuclei can vary from seconds to millions of years or more
- d. Radon-222 is radioactive, as expected based on the "Rule of 83"
- e. Perfect "conservation of mass" applies to nuclear reactions just as it does to chemical reactions

Answers, Test4–160–Version 2

Electrochemistry and Nuclear Chemistry

1. C 2. C 3. C 4. A 5. D 6. B 7. B 8. C 9. D 10. A 11. C 12. A 13. D 14. B 15. B 16. D 17. B 18. E 19. D 20. A 21. A 22. D 23. A 24. A 25. B 26. D 27. B 28. C 29. C 30. D 31. D 32. D 33. C 34. E