

Key Equations, Numerical Relationships

1.
$$[H^+][HO^-] = 1.00 \times 10^{-14}$$

2.
$$pH = -log[H^+]$$
 $pOH = -log[OH^-]$

$$[H^{+}]=10^{-pH}$$

3.
$$pH + pOH = 14$$

Weak acid problems (assuming simplifying assumption)

4.
$$[\mathbf{H}^{\oplus}] = \sqrt{K_a \times [\mathbf{HA}]_{init}}$$

5.
$$K_a = \frac{[H^+]^2}{[HA]_{init}}$$

6.
$$pK_a = -\log K_a$$
 $pK_b = -\log K_b$ $K_a = 10^{-pKa}$

$$pK_b = -\log K$$

$$K_a = 10^{-pK_a}$$

$$K_b = 10^{-pKb}$$

Weak base problems (assuming simplifying assumption)

7. [H0
$$\bigcirc$$
]= $\sqrt{K_b \times [Base]_{init}}$

8.
$$K_b = \frac{[HO^-]^2}{[Base]_{init}}$$

Conjugate KaKb

9. $K_aK_b = 10^{-14}$ for a conjugate acid/base pair.

Some Calculation Logic Scenarios

Strong acid → pH
Strong base → pH
Strong base] → [HO □] → pOH → pH
Weak acid + K_a → pH
Weak acid] + K_a → [H □] → pH
pH of weak acid → K_a
pH → solve for [H □] → K_a
Weak base + K_b → pH
pH of weak base → K_b
pH → solve for [HO □] → pOH → pH
Weak base + K_a of conjugate acid → pH

- Many of these can be further lengthened by adding a $pK_a \rightarrow K_a$ or $pK_b \rightarrow K_b$ step.
 - Many can also be further lengthened by having you calculate your molarity of a starting strong or weak acid.
 - Dilution: Given an original concentration, what is the concentration after diluting?
 - o Grams in solvent, use grams and molecular weight to find moles, then moles and volume to determine molarity.