Ch. 10 Gases and the Ideal Gas Law(s)

10.1 The Atmosphere

- 1. Earth surrounded by gas
- 2. Major components:
 - Nitrogen 78%
 - Oxygen 21%
 - Miscellaneous: All <1%
 - Argon, carbon dioxide, neon, hydrogen, helium, methane, ozone, etc.

Answers Included

10.2 Properties of Gases

General Properties

- 1. Can be compressed
- 2. Exert pressure
- 3. Expand into whatever volume is available
- 4. Mix completely

Four Defining Variables for Any Pure Gas

- 1. Amount
 - Moles is what matters in most calculations
 - Interconversions from grams to moles, or from moles to grams, is involved in many problems
- 2. Volume
- 3. Pressure
- 4. Temperature
 - In Kelvin

STP: Standard Temperature and Pressure

- 0° C (273 K)
- 1 atmosphere (760 mm Hg)
- 1 mole == 22.4 L for an ideal gas at STP

Several Key Conversion Factors When Dealing with Gases

	Conversion Factors	Interconversion Between:
1.	1.0atm = 760 mm Hg	Pressure units
2.	$K = 273 + {}^{\circ}C$	Temperature units
3.	$x moles = \frac{actual mass}{known molar mass}$	Mass/mole interconversions
4.	1 mole = $22.4 L$ at STP	mole/volume interconversions at STP

10.3 Kinetic-Molecular Theory

- 1. Gas molecules are far apart
 - mostly empty space
- 2. Gas molecules move randomly at various speeds and in every possible direction
- 3. Except when smolecules collide, forces of attraction and repulsion between them are negligible.
 - IMF don't attract them together, unlike with liquids or solids
- 4. Collisions occur at times and are "elastic"
 - A collision does not impact the combined energy.
 - But the <u>directions</u> and <u>speeds</u> of the colliding gases <u>may change</u>.
- 5. The <u>average kinetic energy</u> of gas molecules is proportional to <u>absolute temperature (in Kelvin)</u>

Practical Temperature-Related Notes:

- 1. Not all molecules at a given temperature have the same energy.
 - An increase in temperature significantly increases the population of high energy molecule
- 2. An increase in temperature significantly increases the population of high energy molecule
- 3. Smaller molecules move much faster (on average) than larger molecules at a given temp
 - They need much more speed to have the same average energy
 - Average speed is not directly related to temperature ($E = mv^2$)

<u>Practical Pressure</u>: <u>Movement</u> → <u>collisions</u> with walls/surface → <u>PRESSURE</u>

- 1. More hits \rightarrow more pressure
 - Higher $\underline{\text{temp}} \rightarrow \text{faster average speed} \rightarrow \text{more hits} \rightarrow \text{more pressure}$
 - More volume \rightarrow fewer molecules per area \rightarrow fewer hits \rightarrow less presure
 - Less volume → more molecules per area → more hits → higher pressure
 - More gas (more moles) → more molecules per area → more hits → higher pressure
- 2. More energetic hits → more pressure
 - Higher $\underline{\text{temp}} \rightarrow \text{faster average speed} \rightarrow \text{harder hits} \rightarrow \text{more pressure}$

Higher temp → higher pressure
Smaller volume → higher pressure

Small Gases "escape" through tiny holes faster than big molecules

• Helium balloons vs. air balloons

10.4-7 Gas "Laws"

"ideal" gases all behave the same: same properties, laws

The Ideal Gas Law	PV = nRT			
Rearranged Versions	$V = \frac{nRT}{P}$	$P = \frac{nRT}{V}$	$n = \frac{PV}{RT}$	$T = \frac{PV}{nR}$

P = Pressure (atm)

V = Volume(L)

n = moles

 $R = gas constant = 0.0821 atm \cdot L/mol \cdot K$

T = Temperature (Kelvin)

More gas → more volume (if pressure is constant) or more pressure (if volume is fixed)
Higher temperature → more volume (if pressure is constant) or more pressure (if volume is fixed)
More pressure → less volume
More volume → less pressure

Some Problem Types:

- a. Given any 3 of the 4 variables, solve for the 4th.
- b. Given initial conditions, how would changing any variable change others?
- c. STP conditions: 22.4 L = 1 mol

Lots of problems that use this.

d. And more...

Volume and Pressure (Boyle's Law) $V \propto 1/P$

1. A balloon at 2.3 atm has a volume of 28 L. What will the volume be at 1.0 atm? (Assume constant temperature)

VIPI=VAP

less pressare, more volunt

2. A gas at 740 mm Hg has volume 720 L. What pressure in atm is needed to reduce the volume to 175 L? (Assume constant temperature)

Key: Convert pressure to atm

xatur = 740 mm Hg/ 1 atm - 0,974 atm

3. The volume of a gas increases from 3.0 to 9.0 L. If the original pressure was 3 atm, what is the final pressure?

Volume and Temperature (Charles's Law) V ∞ T (in Kelvin)

4. What is the volume if 78.0 L of gas is heated from 20° C \rightarrow 100°C? (Assume constant pressure)

Key: Always convert °C to Kelvin

$$30^{\circ}C = 393 \text{ K}$$

 $100^{\circ}C = 373 \text{ K}$

Volume and Moles (Avogadro's Law)

 $V \propto n$ (in moles)

- 5. A container with 1.0 mole of $CO_2(g)$ has a volume of 22.4 L. What will be the volume if:
 - a. 2 more moles is added

224 (3 mol) = /67,2 L

b. 1 mole of $N_2(g)$ is added?

22.4 (2 mol) = /44.8 L

c. 0.5 moles escapes through a leak? 22 4 (5 mol) 11.2 L

6. The volume of a gas at STP is 22.4 L/mol. What would be the volume of 12g of $CO_2(g)$ (mw = 44g/mol) at STP?

Key: Always convert grams to moles

x L=129/1mol 122.42-/6.11 L)

Key: At STP, can go from L to moles Or from moles to L

Logic: q -> mol -> Liter

7. Would you expect 12g of $CH_4(g)$ (mw = 16g/mol) at STP to have a larger or a smaller volume?

129 CHy = 0.75 mol Almost 3 than
129 Cg = 0.27 mol times the undes,
almost 3 times the idume.

The Ideal Gas Law:

PV = nRT (R = 0.0821)

What is the volume for 12 g of N₂ at 1.2 atm and 25°C?

Key:

a. Always convert to proper units b. Rearrange equation as needed

V= nRT = (6.429)(.0821)(298) = [8.74L

129 N2/1mol = 0,429 mol

9. How many moles are in a 4.0 L sample of gas at 600 mm Hg and 25° C? 2S + 273 = 29f

Note: does it matter which gas?

over the same of the same of gas at ood mining and 25 C:
$$V = N RT$$

$$N = \frac{PV}{RT} = \frac{(4.0)(.789)}{(.0821)(.298)} = \frac{(.000 \text{ min})[.3 \text{ mod}]}{(.0821)(.298)} = \frac{(.000 \text{ min})[.3 \text{ mod}]}{(.0821)(.298)}$$

10. What is the pressure of 14g Ar(g) (39.9 g/mol) at 52° C in a 4.6 L container?

$$P = nRT$$

$$P = \frac{(149 \text{Kmol})(.0721)(52+273)}{\sqrt{399}(.0721)(52+273)} = \sqrt{2.0 \text{ atm}}$$

STP: Standard Temperature and Pressure: 0° C (273 K), 1.00 atm. (memorize) 11. Calculate the volume of one mole of gas (any gas) at STP using the ideal gas law.

$$V = \frac{nRT}{p} = \frac{(1)(.0821)(273)}{1} = \frac{1}{1} = \frac{1}$$

Key: At STP, all gases have the same volume per mole: みみん/ L/1 mole

12. What is the mass of 12 L of N₂ (28 g/mol) at STP?

Key: At STP, can go from L to moles
Or from moles to L

13. What is the volume of 16 g of O₂ (32 g/mol) at STP?

14. What is the density (in g/L) of Ar (40 g/mol) at STP?

Gases and Stoichiometry

- 1. We can easily interconvert between volume and moles
 - Easiest at STP
 - Still possible under any temperature/pressure conditions.
- 2. Since we can easily use molar mass to interconvert between mass and moles, we can indirectly interconvert between volume and gramps.
 - Easiest at STP
 - Still possible at any temperature/pressure conditions.

Volume (Liters) ⇔ moles ⇔ grams

Grams ⇔ moles ⇔ Volume (liters)

- 3. For different gases under equal temperature/pressure conditions, volume ratios = mole ratios.
 - If given volume ratios in a reaction, you can easily deduce stoichiometry ratios (balanced equations)
 - If given a balanced equation, you can easily deduce volume ratios
- 15. Balance the reaction by filling in the coefficients, given the following volume information: 10~L~A reacts with 20~L~B to give 10~L~of~C.

$$1A + 2B \rightarrow 1C$$
 $10L \quad 20L \quad 10L$

16. If 8.0 L of A reacts, how many L of B, C, and D will be consumed or produced, given the following balanced reaction: 1A + 2B → 2C + 1D

X: B 16L X: C 16L XD 8L

17. How many liters of CO_2 are produced from combustion of 28g of C_4H_8 (56 g/mol) at STP, given the following balanced reaction? : $1 C_4H_8 + 6 O_2 \rightarrow 4 CO_2 + 4 H_2O$

Review Problems for Simple Conceptual Gas Concepts. Mathematical relationships may exist in some	
cases, but it so I'm just looking for relative rankings.	
18. If 70 students take a test, and the average is 75%, will any students get >90%?	
19. If 70 students take a test, and the average is 85%, will any students get >90%? Yes, More	
20. Will more students get >90% if the average was 75% or 85%?	
21. Water boils at 100°C. Is it possible for some water molecules to evaporate at 50°C? Why? Yes, Some have above average energy, enough to 22. Will more water evaporate faster at 80°C? Why?	
Yes. More have escape energy, exceed the energy threshold	y/.
23. At 25° C, how does the <u>average kinetic energy</u> compare for N ₂ (28 g/mol), O ₂ (32 g/mol), and He (4 g/mol)? All SQMe.	
24. At 25° C, how does the <u>average</u> speed compare for N ₂ (28 g/mol), O ₂ (32 g/mol), and He (4 g/mol)? He 7 N ₂ 7 O ₂ S maller are faster	
25. If the walls of a balloon have some tiny pores, what would you expect for the average escape rate ("rate of effusion") for N ₂ (28 g/mol), O ₂ (32 g/mol), and He (4 g/mol)?	
He 7 Nz 7 Cz smaller escape more easily	
26. At 25° C and 1 atm pressure, how does the volume compare for one mole each of N ₂ (28 g/mol), O ₂ (32 g/mol), and He (4 g/mol)?	
27. At 25° C and 1 atm pressure, how does the <u>mass</u> compare for one liter each of N ₂ (28 g/mol), O ₂ (32 g/mol), and He (4 g/mol)?	
Oz 7 Nz 7 He More mass per mole, more mass per L	
28. At 25° C and 1 atm pressure, how does the density compare for N ₂ (28 g/mol), O ₂ (32 g/mol), and He (4 g/mol)?	

He (4 g/mol)? $Q_2 > \mathcal{U}_2 > \mathcal{U}_2$

Key Gas Math Summary

STP: Standard Temperature and Pressure

- 0° C (273 K)
- 1 atmosphere (760 mm Hg)
- 1 mole == 22.4 L for an ideal gas at STP

Several Key Conversion Factors When Dealing with Gases

	Conversion Factors	Interconversion Between:
1.	1.0atm = 760 mm Hg	Pressure units
2.	$K = 273 + {}^{\circ}C$	Temperature units
3.	$x moles = \frac{actual mass}{known molar mass}$	Mass/mole interconversions
4.	1 mole = $22.4 L$ at STP	mole/volume interconversions at STP

The Ideal Gas Law	PV = nRT			
Rearranged Versions	$V = \frac{nRT}{P}$	$P = \frac{nRT}{V}$	$n = \frac{PV}{RT}$	$T = \frac{PV}{nR}$

P = Pressure (atm) V = Volume (L) n = moles R = gas constant = 0.0821 atm•L/mol•K T = Temperature (Kelvin)	The correct units are essential. Be sure to convert whatever units you start with into the appropriate units when using the ideal gas law.
--	--

$R = 0.0821 \text{ atm} \cdot L/\text{mol} \cdot K$

Density = g/L

Basic Gas Laws:

$V \propto 1/P$	or	PV = constant	Boyle's Law
$V \propto T$	or	V/T = constant	Charles's Law
$V \propto n$	or	V/n = constant	Avogardro's Law
$V \propto T/P$	or	PV/T = constant	Combined Law