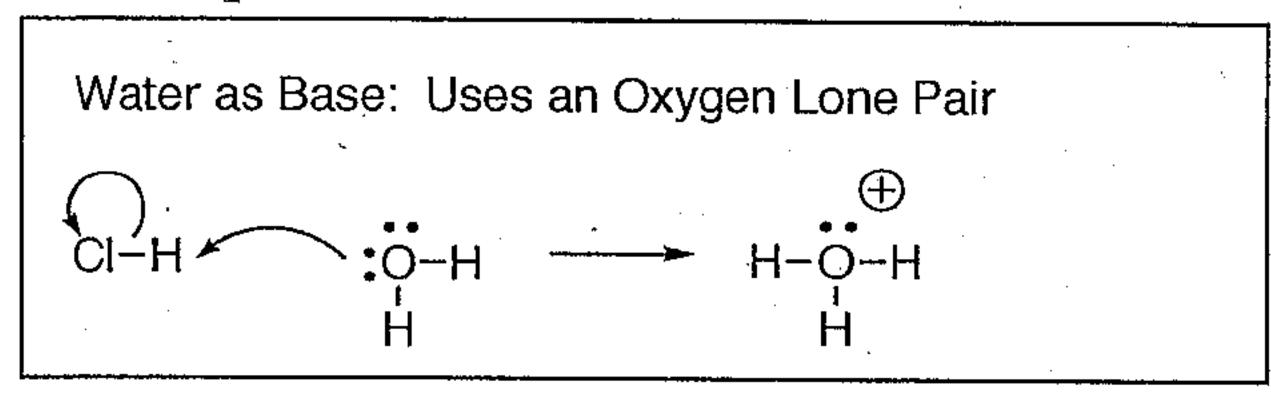
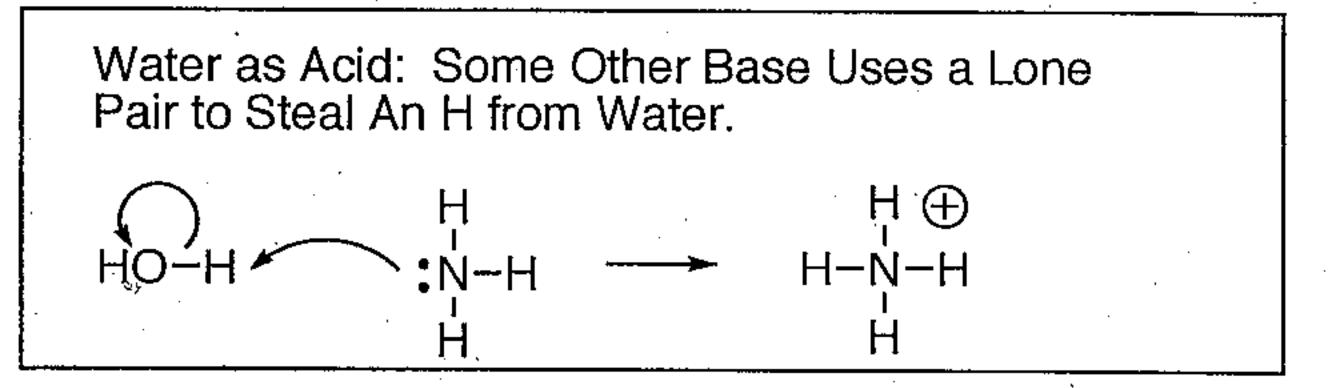

1

Ch. 16 Acids and Bases

Acid/base character (pH) of a solution has enormous impact


- a. lake biosystem (acid rain)
- b. farming/gardening (soil pH, alkalinity, etc)
- c. rusting/corrosion
- d. biology
- cells, proteins, blood, enzymes, hormones need very tight pH control
- Most bio reaction mechanisms involve H^+ transfer $\rightarrow [H^+]$ has huge impact on rates


16.1 Bronsted-Lowry Concept of Acids/Bases

The change in either charge or number of H's can help identify whether a chemical is functioning as an acid or a base.

- 3. Every base needs a lone pair which gets used to bond to the new hydrogen
 - The two electrons involved in the new bond to hydrogen always come from an electron pair on the base

4. Water can function as either a base (accepting an H^{\oplus} when an acid is placed in water) or as an acid (donating an H^{\oplus} when a base is placed in water)

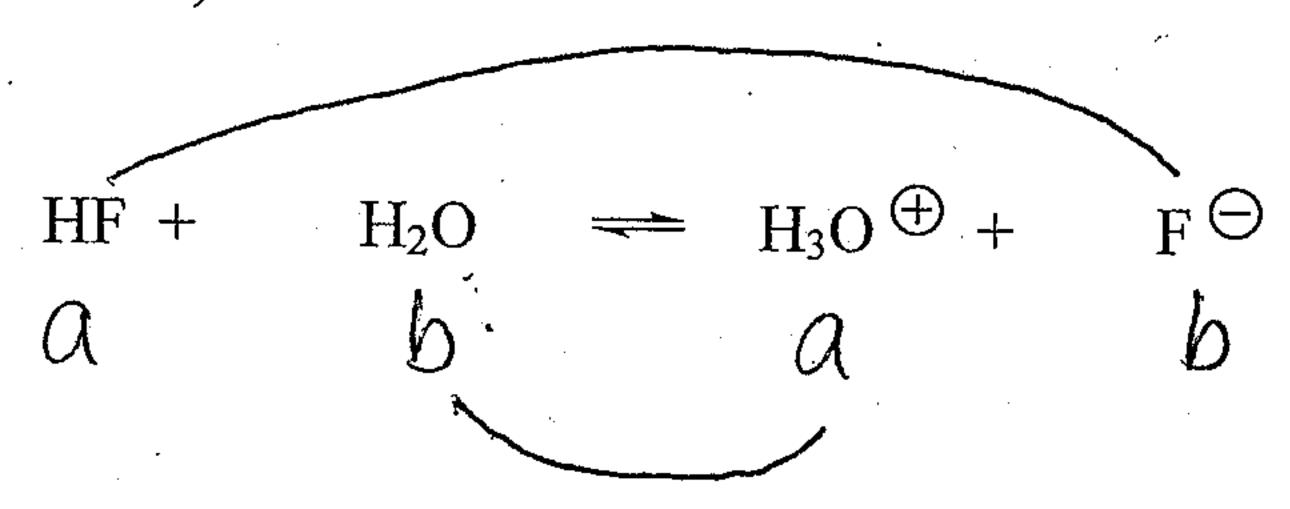
- In every acid-base reaction, you must have both an acid (a chemical functioning as the H [⊕] donor) and also a base (a lone-pair donating chemical functioning as the H [⊕] acceptor)
 An acid can't give unless there is some basic lone-pair to take.....
- Terminology: H (+) = "proton"

Conjugate Acid-Base Pairs

Structures that differ by one H and one charge unit are referred to as conjugate acid-base pairs

Conjugate Acid HF	Conjugate Base F (Secondary)	Conjugate Acid H ₃ O	Conjugate Base H ₂ O
HC1	$_{\text{Cl}}$	H_2O	HO 🖯
H_2SO_4	HSO ₄ \ominus	$_{\mathrm{NH_{4}}}\oplus$	NH_3
$HSO_4 \Theta$	SO_4^{2-}		•

1. Draw the conjugate bases	2. Draw the conjugate acids
a. HCN	a. SO_4^{2-} HSO_y^2 (not
b. HBr	b. NH3 NH4 P
c. CH ₄	c. Cl⊖ HCl

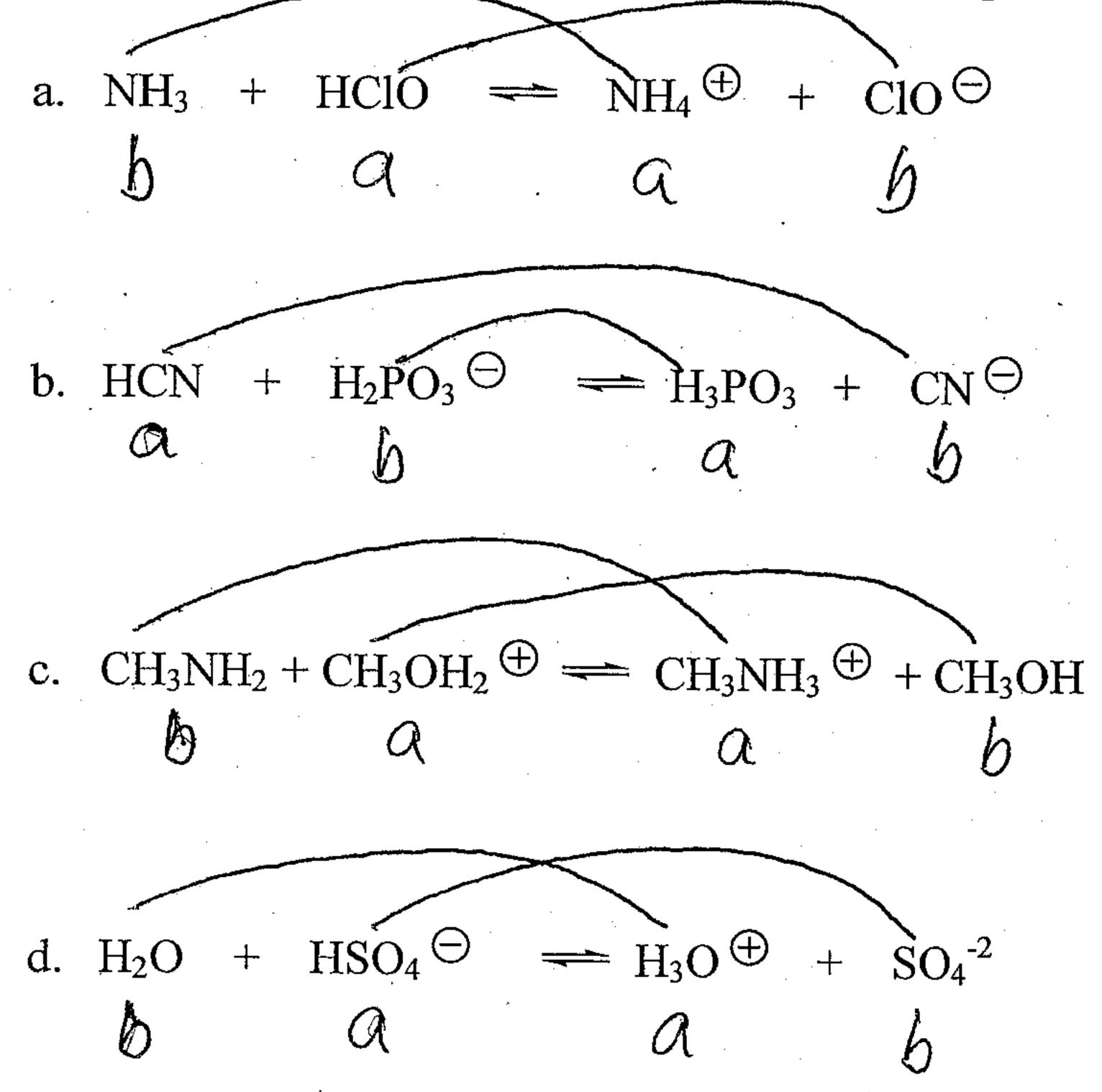

Relative Strengths of Acids and Bases

Melau	ve Suenguis of Acids	and bases	i		
•		Acid	Base		
Strong	Strong acids, 100%	HCl	Cl 🖯	Nonbases	Non
5	Ionized in H ₂ O	H_2SO_4	$_{\mathrm{HSO_{4}}}\Theta$		1001
	₹	$H \oplus (aq) = H_3O^+$	H_2O		
		HSO_4	SO_4^{2-}	The Ampartament	•
Weak	Increasiv	HF	$_{\mathbf{F}}\Theta$	Increasing	
	acid	H_2CO_3	HCO_3 Θ	base	Weak
	stremth	. NH₄ ⊕	NH_3	strenath	·
		$HCO_3 \Theta$	CO_3^{2-}		
		H_2O	$OH \Theta$		
NON	Nonacids	$_{\mathrm{OH}}$	O^{2-}	Strong bases, 100%	Strei
/VV Y		H_2	$_{\rm H} \ominus$	Protonated in H ₂ O	> 1001

- Stronger acids have weaker conjugate bases and weaker acids have stronger conjugate bases
- Stronger bases have weaker conjugate acids and weaker bases have stronger conjugate acids

Conjugate Pairs in Acid-Base Reactions and Acid-Base Equilibria

- 1. Note: Some acid-base reactions go entirely to the product side, or stay entirely on left side
- 2. But many acid-base reactions involve equilibria, in which a proton is shuffling back and forth from side to side
- 3. In the example shown, a proton (H^{\oplus}) jumps back and forth between F and O.
 - a. Going from left to right, F is the giver (HF = acid) and O the acceptor ($H_2O = base$)
 - b. Returning from right back to left, O is the giver (H₃O \oplus = acid) and F the acceptor (F \ominus = base)



Notes

- 1. Each <u>side</u> of every acid-base reaction has one thing that functions as an acid and the other as a base. (This is true on the right side as well as on the left side).
- 2. Every acid-base reaction has 2 conjugate pairs
 - a. For the acid on the left, it's conjugate base appears on the right side
 - b. For the base on the left, it's conjugate acid appears on the right side.

<u>Problems</u>: For each of the species in the following equilibria, mark whether it functions as an acid or a base?

• For each of the species in the following equilibrium, draw an arrow to it's conjugate.

Notes/Notice:

- 1. Notice the change in H-count and the change in charge for each of these
- 2. The <u>acid</u> on the left always loses a hydrogen and becomes one step unit more negative
- 3. The <u>base</u> on the left always gains a hydrogen and becomes more positive

4. Cations usually function as acids

• They are positive, and want to get rid of H ⁽⁺⁾ to alleviate positive charge

5. An anion usually function as a base

- It usually wants to get more positive, and the negative charge always means it has a lone-pair available
- Some exceptions, such as example "d"

Acid/Base Strength

- 1. Strong acids are better H donors than weaker acids

 Strong bases are better H acceptors than weaker bases
- 2. Acid/base strength depends on love for H (+)
- Consider the conjugate pair of Z^{Θ} and HZ
 - a. High H $^{\oplus}$ Love: Suppose Z $^{\ominus}$ really loves H $^{\oplus}$
 - 1. Then Z^{\bigcirc} is a strong base
 - It aggressively grabs H ⁽⁺⁾ from somebody else
 - 2. Then HZ is a very weak acid or a total non-acid
 - Z tightly holds onto the H ⁽⁺⁾
 - It doesn't let anybody else steal H ⁽⁺⁾ unless it's a base who loves H ⁽⁺⁾ even more
 - b. Low H ⁽⁺⁾ Love: Suppose Z ⁽⁻⁾ doesn't have much love for H ⁽⁺⁾
 - 1. Then Z^{\bigcirc} is a weak base or a totally non-base
 - It's very weak about grabbing H ⁽⁺⁾ from somebody else
 - 2. Then HZ is acidic
 - Z is very weak about holding onto the H \oplus
 - Some base who loves H^{\oplus} more can easily steal the H^{\oplus} away and leave Z^{\ominus} behind
- 3. Love for H ⁽⁺⁾ and the Competition between Competing Bases

 other views love for electrons. More bases letectronegative bases are more content, stable, are more content, stable,

NOTICE: There is one hydrogen, but two things (Z^{Θ} and X^{Θ}) competing for it.

- a. Whichever base loves H^{\oplus} more will be the stronger base, and the equilibrium will drive to the opposite direction \rightarrow to the conjugate acid of the strong base
- b. Whichever base loves H (+) less will lose the competition and remain in its basic form
- 1. Strong love for H^{\oplus} = strong base
- 2. Equilibrium goes from strong base to weak base, favors the side where the weaker base lies.
- 3. In the same way, the equilibrium always goes from the stronger acid to the weaker acid, and always favors the side with the weaker acid
- 4. The weaker acid and weaker base are always on the same side, and the stronger acid and stronger base are always together on the other side

4. Acid-Base Strength and the Direction of Acid-Base Equilibria

*Acid/base reactions always go from stronger acid/base to weaker acid + base

K favors weaker

 $H_2O + Na \oplus Cl \ominus$ **HCl** NaOH K large (K >> 1)Stronger stronger weaker weaker acid base acid base FΘ $HS \Theta$ H_2S HF+ K small (K < 1)weaker weaker stronger stronger acid base acid base

- a. Stronger acid + base always on same side
- b. If you know any of relative strengths, can predict sense, K
- c. If given K info, can identify weaker/stronger

Problems

1. HF is stronger than HNO₂. Predict the "direction" of the reaction, and say whether K will be greater or less than 1. (ID each as acid or base)

2. Predict the "direction" of the reaction, and say whether K will be greater or less than 1.

HF+C1
$$\Theta$$
 \leftarrow HC1+F Θ \leftarrow K $<$ 1 weak \leftarrow acid base, but \leftarrow (not basic at all) acid stronger than C1 Θ

3. Classify each as the weaker or stronger acid or base.

 $K = 10^3$ proves $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$

4. Classify each as the weaker or stronger acid or base.

HCN +
$$SO_4^{2-}$$
 $\leftarrow \frac{fvow}{K}$ HSO $_4$ \ominus + CN \ominus K = 10^{-5} weaker weaker stronger acid base acid base

5. Direct Relationship between strengths of conjugate acid/base

Acid Strength	Strength of Conjugate Base		
Strong	Nonbasic		
Weak	Weak		
Nonacid	Strong base		
•			

Note: there is a huge range of strengths within the "weak" category

	Acid	Base	
Strong acids, 100%	HC1	Cl⊖	Nonbases
Ionized in H ₂ O	H_2SO_4	HSO ₄ Θ	
∧	$H \oplus (aq) = H_3O^+$		
CHOMEN	HSO_4	H_2O SO_4^{2-}	
Strong	HF	$_{\mathrm{F}}$ \ominus	wealer
	H_2CO_3	$HCO_3 \Theta$	
	NH₄ ⊕	NH_3	al common /
weaker	$HCO_3 \Theta$	CO_3^{2-}	Stromer
	H_2O	OH_{Θ}	
Nonacids	$_{\mathrm{OH}}$	O^{2-}	Strong bases, 100%
	H_2	$H\Theta$	Protonated in H ₂ O

The weaker the acid, the stronger it's conjugate base. The stronger the acid, the weaker it's conjugate base.

6. Strong Acids versus Weak Acids versus Nonacids. How do they Differ in Water?

a. Strong acids ionize completely in water

$$HCl + H_2O \rightarrow H_3O \oplus + Cl \ominus$$

- There is NO acid left, no acid where the H and the Cl are bonded.
- Goes completely to the product side.
- b. Weak acids ionize incompletely in water
 - An equilibrium exists
 - Normally only a small amount of product ion is present at equilibrium, and most of the weak acid is in it's undissociated form

$$HF + H_2O \implies H_3O \oplus + F \ominus K = 10^{-5}$$

- There is plenty of HF left. But meaningful amounts of $H_3O^{\bigoplus} + F^{\bigoplus}$ ions present.
- Some "weak" acids are stronger or weaker than others.
- c. Nonacids: Don't ionize at all in water.
 - No equilibrium exists
 - Stays completely on the left side

$$CH_4 + H_2O \leftarrow H_3O \oplus + CH_3 \ominus$$

Group d

are

not

acidic

metal cations

16.1,2 Recognizing Acids

1. Memorize Six strong acids

HCl HBr HI HNO3 H2SO4 HClO4 CICY

MANUALICA • Assume all other acids are weak acids

The conjugate anions of these strong acids are nonbasic

2. Weak acids

a. Usually formula written with H in front

HF HCN H₂S H₂CO₃ → acids

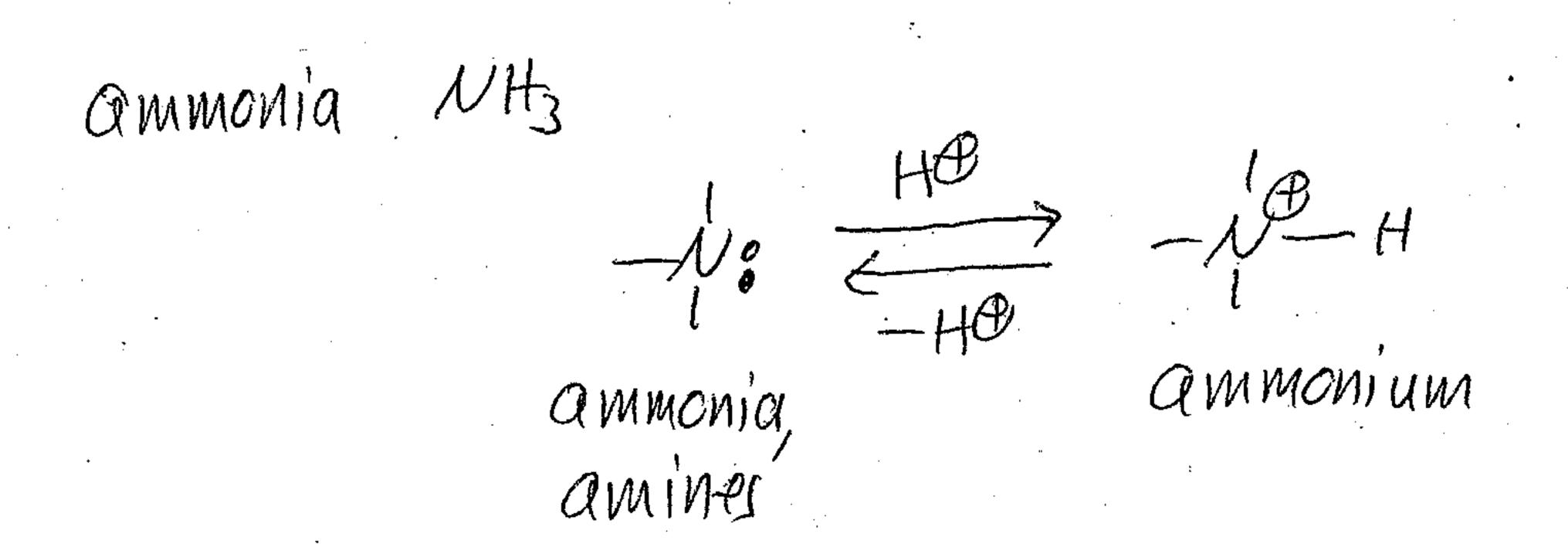
CH₄ NH₃ SiH₄ → nonacids

* Note: NOT ALL H's are acidic!!

b. Carboxylic acids

- The "R" group can be anything, but is usually hydrocarbon
- The anion is stabilized by resonance
- Carboxylic acids are often written as: CH₃COOH, C₂H₅COOH, etc.

Transition-metal Cations: in water they are "hydrated" and function as weak acids (Section 16.5, p. 784)


General: $M^{\oplus}(H_2O)_x + H_2O \longrightarrow H_3O^{\oplus} + M(H_2O)_{x-1}(OH)$

Ex:
$$Fe^{3+}(H_2O)_6 + H_2O = [Fe(H_2O)_5 OH]^{2+} + H_3O \oplus$$

$$Cu^{2+}(H_2O)_4 + H_2O = [Cu(H_2O)_3 OH] \oplus + H_3O \oplus$$

- d. Ammonium Ions are weak acids (see more under bases, amines)
 - Conjugate acids of neutral amine bases
 - Formal positive charge on nitrogen
 - Unlike most acids, these are cationic species

 $\bigcirc (M MON 1 M M) + (CH_3NH_3 \oplus , (CH_3)_2NH_2 \oplus , C_6H_5NH_3 \oplus , etc.$

Recognizing Bases

- 1. Soluble metal hydroxides ⇒ strong bases
 - All Group 1 metal hydroxides, many Group 2...
 - Group 1 metal hydroxides produce 1 mole of hydroxide per mole of formula
 - Soluble Group 2 metal hydroxides produce 2 moles of hydroxide per formula

Group 1	Group 2
LiOH, NaOH, KOH	Ca(OH) ₂ , Ba(OH) ₂

NaOH (aq)
$$\rightarrow$$
 Na \oplus (aq) + \ominus OH(aq) (Complete)
1 mole 1 mole

Ca(OH)₂ (aq)
$$\rightarrow$$
 Na $\stackrel{\textcircled{+}}{=}$ (aq) + 2 $\stackrel{\textcircled{-}}{=}$ OH(aq) (Complete)
1mole 2 mole

• most Transition-metal hydroxides have limited solubility and aren't effectively strong

$$CuOH(S) \longrightarrow Cu^{+}(aq) + OH(aq)$$
1mole less than 1mole (Incomplete)

2. Amines: Neutral N Compounds ⇒ weak bases

Parent:
$$H_3N$$
: $+ H_2O = \ThetaOH + NH_4 \oplus Weak acid$ weak base

• Other amines have N: in common, but replace one or more of the hydrogens with other thing, usually carbon groups

Amines Bases (examples)	Conjugate acids = "Ammonium" Ions
NH_3	NH.
CH_3NH_2	CH_3NH_3
$(CH_3)_2NH$	$(CH_3)_2NH_2^{\oplus}$
$C_6H_5NH_2$	$C_6H_5NH_3$

- N lone pairs accept H ⁽⁺⁾
- Amines are the only "neutral bases". All other bases have anionic charge.
- The conjugate acids are called "ammonium ions" (see earlier)
 - o "Amines" = neutral, weakly basic
 - o "Ammoniums" = cationic, weakly acidic
- The ammonium ions have formal ⁽⁺⁾ charge on N
- 3. Any conjugate base of a weak acid is weak base
- 4. Any conjugate base of a non-acid is a strong base

Note: Most Anions are Basic. Whenever you see an anion, consider whether it will be basic!

5. Evaluating the Basicity of Anions

- a. Draw the conjugate acid of the anion
- b. Evaluate the acidity of the conjugate "acid" as strongly acidic, weakly acidic, or nonacidic
- c. Based on the acidity of the acid, decide what the strength of the anion base would be.

Conjugate Acid Strength	Strength of Conjugate Base
Strong acid	Nonbasic
Weak acid	Weak Base
Non-acid	Strong base

Base Strength	Anion	Conjugate Acid	Acid Strength
Weak	$_{\mathrm{F}}$	HF	WA
weal	Θ CN	HCN	WA
Weal	H_2PO_4	H_3PO_4	WA
Non-base	Cl 🔾	HC1	SA
Strong base	Н	H_2	non-acid
strong base	Θ_{CH_3}	CH ₄	non-acid

Note: Most anions are basic

- Memorize the six anions derived from strong acids that are not basic
- Assume any other anion is basic

Six strong Acids	HC1	HBr	HI	HNO_3	H_2SO_4	$HClO_4$
Six Non-Basic Anions	Cl 🖯	$_{\mathrm{Br}}\ominus$	$I \ominus$	$NO_3 \Theta$	$_{\mathrm{HSO_{4}}}$	ClO ₄ Θ

Recognizing and Classifying Acid/Base Character of Ionic Formulas

- 1. Distinguish molecular from ionic formulas
- 2. For ionics, check each ion separately
 - a. Is the cation acidic?
 - 1. No if it's a group 1 or group 2 metal cation
 - 2. Yes if it's a transition metal cation
 - 3. Yes if it's an ammonium cation
 - b. Is the anion basic?
 - 1. No if it's one of the six non-basic anions derived from strong acids
 - 2. Yes if it's any other anion

1. Classify as Strong Acid, Weak Acid, Strong Base, Weak Base, or Non-acid/base

a. HBr SA

b. HF WA

c. CH3CH2NH2 WB QWINE

d. CH3CH2COOH WA Carborylic acid

e. H_2SO_4 $\mathcal{S}A$

 $_{f.}$ H_3PO_4 WA

g. HClO WA

h. CIO = weak acid

i. C10 non-boise HC1 is a strong acid

j. NO3 @ non-base HNC3 is a strong acid

k. 02- strong base Hos is a non a cid

1. CH_4 NON-QCI'Q

m. NaOH Strong base

n. NaF weak base (FG) HF is weak acid

o. KCI Neutral, non-acidic, non-basic

p. NH₄NO₃ WA WHY

q. FeBr₃ WA Fe³⁺

16.3 Autoionization of water

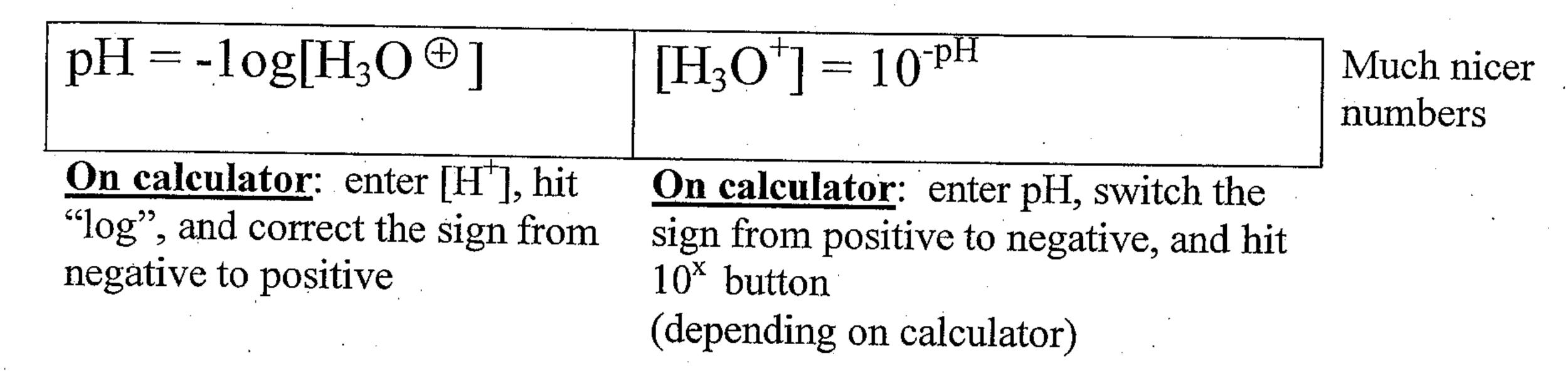
 $H_2O(1) + H_2O(1) = H_3O \oplus (aq)^+ OH \ominus ($

 $H_3O \oplus (aq)^+ OH \ominus (aq) \quad K_w = 1.00 \times 10^{-14} = \begin{bmatrix} H_3O^+ \end{bmatrix} \begin{bmatrix} OH \end{bmatrix}$

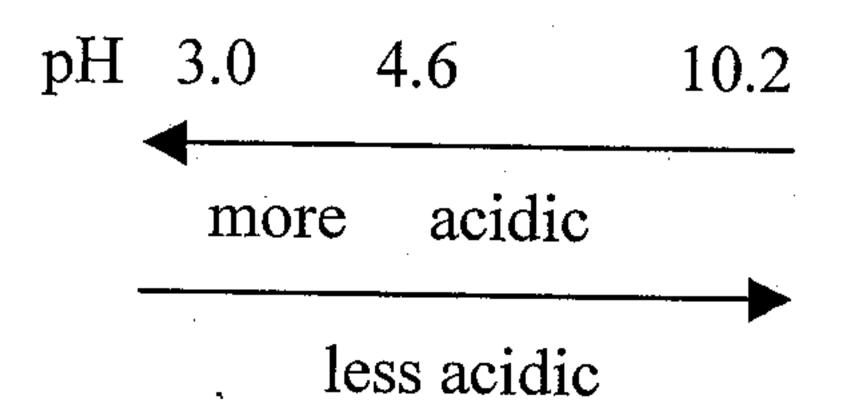
THOOT = THT

1. Water is both weakly acidic and basic

2. Amount of ions is teensy but very important


3. $K_w = 1.00 \times 10^{-14}$ always true

4. If either [H₃O ⁽⁺⁾] or [HO ⁽⁻⁾] known, can calculate other


 $[H_3O^{\oplus}][OH^{\ominus}] = 1.00 \times 10^{-14}$ Memorize!

SO [H+B(OH)= 1x10-14] Neutral: $[H_3O^{\scriptsize \oplus}] = 1 \times 10^{-7} = [OH^{\scriptsize \ominus}] \text{ pH} = 7$ Acidic: $[H_3O^{\scriptsize \oplus}] > 1 \times 10^{-7} > [OH^{\scriptsize \ominus}] \text{ pH} < 7$ Basic: $[H_3O^{\scriptsize \oplus}] < 1 \times 10^{-7} < [OH^{\scriptsize \ominus}] \text{ pH} > 7$ But $H^{\scriptsize \oplus}$ is easier to write! • They are really the same thing.

16.4 The pH Scale

1. Higher numberer pH \rightarrow less H \oplus , less acidic, more basic Lower numbered pH \rightarrow more H \oplus , more acidic, more less⁺

2. pH = 7 neutral pH < 6

pH < 7 acidic

pH > 7 basic

- 3. pH change of 1 = tenfold change in [H ⊕]
 Change of 2 = 100-fold change
 pH change of 8 → 4 isn't double the acid or half the acid, it's 10 thousand times more!
- 4. Number of significant figures in $[H^{+}]$ = number of digits <u>after</u> decimal in pH

$$[H^+] = 3.6 \times 10^{-6} \rightarrow pH = 5.44$$

2 sig fig \rightarrow 2 after decimal

- 5. Small pH changes \rightarrow death
 - 7.35 < blood < 7.45
 - bio rates are often strongly H⁺ catalyzed, with 2nd or 3rd order rate dependence on [H⁺]

6. $pOH = -log[OH]$	$[OH^-] = 10^{-pOH}$
just like $pH = -log[H^{\dagger}]$	just like $[H^+] = 10^{-pH}$

7. Since $10^{-14} = [H^+][OH^-] \rightarrow \text{ take negative log of both sides } \rightarrow \boxed{14.00 = pH + pOH}$

Skills: interconvert among $\Leftrightarrow [OH]$ $pH \Leftrightarrow pOH$

To know any one allows you to find any of the others!

Problems

1. Find pH for following

a.
$$[H_3O^+] = 1.0 \times 10^{-4}$$

b.
$$[H^+] = 1.0 \times 10^{-11}$$

a) Use [H-7] CH]=
$$1.0 \times 10^{-8}$$
 pH= 4.00 (1) [H+]= $\frac{1 \times 10^{-14}}{0 \times 10^{-14}} = 1 \times 10^{-6}$ pH= 4.00 ov b) pH+potl=14

e.
$$[OH] = 5.8 \times 10^{-4}$$
 $[OH] = 10.74$ $[OH] = 1$

2. Find pOH:

a.
$$[H^{+}] = 3.9 \times 10^{-5}$$
 $\Rightarrow COH^{-} = 4.41$ $\Rightarrow COH^{-} = 9.590$

b.
$$[OH^-] = 3.9 \times 10^{-5}$$

c. $pH = 3.95$
 $OOH = 10.05$

a. pH = 3.72
$$I_{1}^{(A)}$$
 $I_{2}^{(A)}$ $I_{3}^{(A)}$ $I_{4}^{(A)}$ $I_{5}^{(A)}$ $I_{5}^{(A)}$ $I_{5}^{(A)}$

b. pH = 9.81
$$l.55 \times 10^{-10}$$
 $l.55 \times 10^{-10}$ $l.55 \times 10^{-10}$

d.
$$[OH^{-}] = 4.1 \times 10^{-3}$$
 $[PH = 11.61]$ 2.86×10^{-12} $pOH = 6.5.4$

16.5 Equilibrium Expressions and Ionization Constants for Acids, Bases. A. Acids

$$HA (aq) + H20 (1) \longrightarrow H30 \oplus (aq) + A \ominus (aq)$$

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$
Shorthand:
$$HA \longrightarrow H \oplus + A \ominus$$

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} \quad \text{or} \quad \text{Here}$$

- 1. Strong acids: ionize completely ($K_a = infinity$)
- 2. Weak acids: $K_a < 1$
- 3. Larger $K_a \Rightarrow$ stronger acid Smaller $K_a \Rightarrow$ weaker acid
- 4. For weak acids, ionizations may be minimal but is still significant
 - for math calculations, the "simplifying assumption" is usually useful
- 5. Since A \ominus and HA are conjugates:
 - larger $K_a \Rightarrow less basic A \ominus$

(stronger acid → weaker base)

• smaller $K_a \Rightarrow \text{more basic A} \ominus$

(weaker acid → stronger base)

B. Bases

Generic	Base(aq) + H ₂ 0(l) \longrightarrow OH \ominus (aq) + Base-H \ominus (aq) Conjugate acid	$\mathbf{K_b} = \frac{[OH^-][BH^+]}{[B]}$
Anionic Base	$A \ominus + H_2 0 \longrightarrow OH \ominus + HA$ Conjugate acid	$\mathbf{K_b} = \frac{[OH^-][HA]}{[A^-]}$
Neutral Amine Base	$NH_3 + H_20 = OH^{\Theta} + NH_4^{\oplus}$ Amine Ammonium	$\mathbf{K_b} = \frac{[OH^-][NH_4^+]}{[NH_3]}$

16.7 Calculations involving Ka, Kb, pH, pOH

- A. Strong Acids: $[HA] = [H^{\oplus}] \Rightarrow pH$
 - Complete ionization

$$HCl \rightarrow H \oplus + Cl \ominus$$

- To know the concentration of the strong acid is to know the concentration of H \oplus
- B. Strong Bases: complete formation of OH Θ
 - $[NaOH] = [OH^{\bigcirc}] \Rightarrow pOH, pH$
 - o for a group one metal hydroxide (NaOH, etc.), you get exactly as many moles of hydroxide as you put in of NaOH, and [NaOH] = $[OH \ominus]$
 - $\circ NaOH \rightarrow Na^{\oplus} + OH^{\ominus}$
 - For a group two metal hydroxide, you get two moles of hydroxide for every one mole of formula that you put in.
 - \circ 1 Ba(OH)₂ \rightarrow 1 Ba²⁺ + 2 OH \ominus
 - \circ [OH $^{\bigcirc}$] = 2 ([Ba(OH)₂]
 - Since $[OH^{\bigcirc}]$ is knowable, you can then plug in, and find pOH, pH, and/or $[H^{\bigoplus}]$

Some pH Calculations Involving Strong Acids or Bases

1. What is the pH of 1.36×10^{-3} M H₂SO₄?

$$H^{\oplus} = 1.30 \, \text{x} \, \text{c}^{-3}$$

2. An HCl solution has pH = 2.16. what is [HCl]?

3. What is pH for 0.013 M KOH solution?

lagic:[SB] ->[OH]

4. What is pH for a solution that is 0.013 M in $Ca(OH)_2$?

COH)=
$$0.013 \times 2 = 0.026$$
 pOH = 1.59 pH= 12.41 Same logic, but notice 2 hydroxides

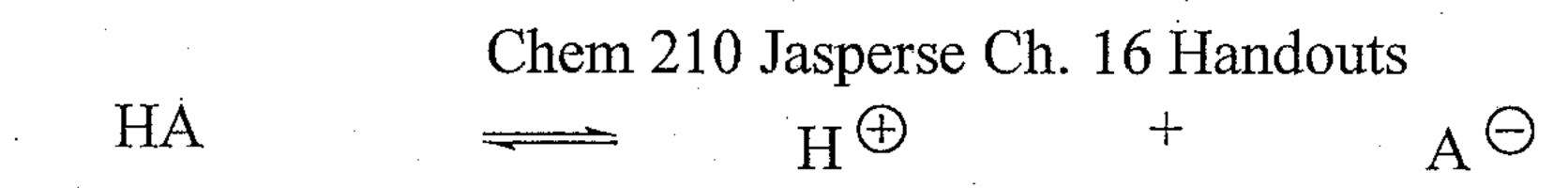
What is the pH if 22 g of Ba(OH) a (90 g/mol) is dissolved in 760 mL of water?

5. What is the pH if 22 g of Ba(OH)₂ (90 g/mol) is dissolved in 760 mL of water?

[Ba(OH)] = / 279 / (mel) = 0,322 mel [OH] = ,372 x2= .643 mel

Two Key Equations

 $K_{a} = \frac{[H^{+}]^{2}}{[HA]_{init}}$


 $[H^{\dagger}] = \sqrt{K_a \cdot [HA]};$

Major Application 1: Given a known Ka, Solve for pH When a Known Amount of Weak Acid is Placed in a Known Amount of Water

Logic: Use
$$K_a \rightarrow \text{solve for } [H^{\oplus}] \rightarrow \text{solve for pH}$$

Steps

- Whether it's given in molarity or not, convert the sample/solvent ratio into Molarity
- 2. Set up an ICE table
- 3. Solve for equilibrium [H \oplus]
 - Use simplifying assumption if K_a is reasonably small
 - Use another simplifying assumption that the original population of H (+) is also reasonably small relative to the final, equilibrium amount of H (+)
- Use [H ⁽⁺⁾] to solve for pH
- 5. Or: If K_a is small enough so that the simplifying assumption is reasonable, you can directly plug into the equation shown above

 1.0×10^{-7}

Initial

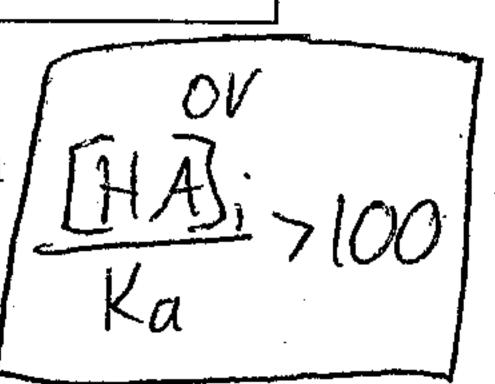
Change Equilibrium

[HA]_{init}

48 4% SMall

Equilibrium After Simplifying Assumptions

CHADint then simplifying assumption is safe.

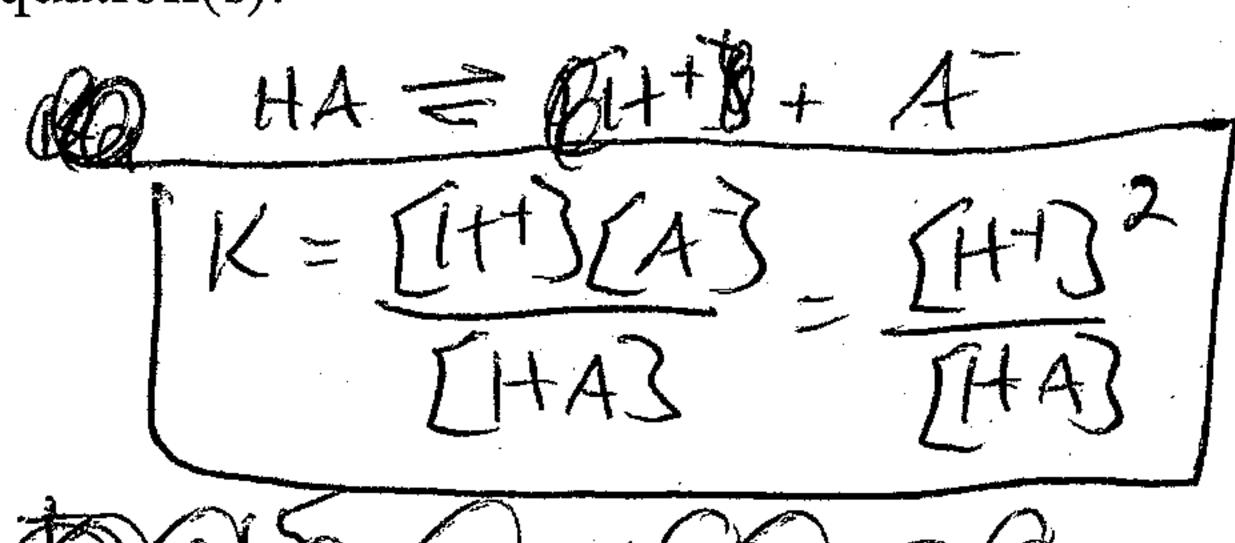

When the simplifying assumptions are used:

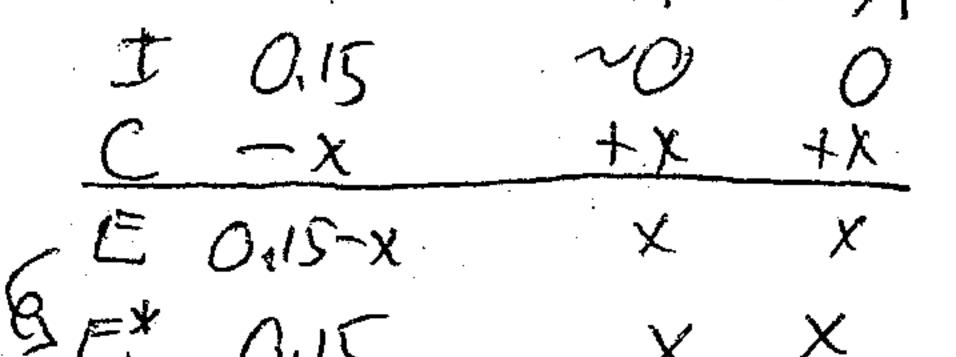
When the first simplifying assumption is not used (but the second one is)

$$\mathbf{K_a} = \frac{[\mathbf{H}^+]^2}{[\mathbf{H}\mathbf{A}]_{\text{init}}}$$

 $[\mathbf{H}^{\oplus}] = \sqrt{K_a \times [HA]_{init}}$

[H (+)] requires a quadratic solution /


2. Major Application 2: Given a measured pH, Solve for Ka When a Known Amount of Weak Acid is Placed in a Known Amount of Water


Logic: Use pH \rightarrow solve for [H $^{\oplus}$] \rightarrow solve for K [H+]2 - learned from pH [HA]_{init} - Know able

Weak Acid pH/Ka Problems

1. pH \rightarrow K_a What is K_a for an acid if an 0.15 M solution is prepared and found to have pH = 4.86?

Equation(s):

	A STATE OF THE POST OF THE POS	ing ixb an	u pir (De	20.7, p / 72.	
	hase			conjugate aci	α
	$\Theta_{\mathbf{A}}^{\bullet}\Theta$	$+ H_2O$		HA'	HO
Initial	$[A \ominus]_{init}$			0	1.0×10^{-7}
Change	~~ X			$+\chi$	+X
Equilibrium	[base]; -x			X	x + 10
Equilibrium After Simplifying Assumptions	[base];			<u>X</u>	
$K_{h} = \begin{bmatrix} H & J & 0 \\ & & & \end{bmatrix}$	H3 [0+	132	i+	Cimplifying	

When the simplifying assumptions are used:

When the first simplifying assumption is not used but the second one is

$$\mathbf{K}_{b} = \frac{[HO^{-}]^{2}}{[A^{-}]_{init}} \qquad [HO^{\ominus}] = \sqrt{\mathbf{K}_{b} \times [A^{-}]_{init}}$$

$$[HO^{-}]^{2} \qquad [HO^{-}]^{2} \qquad [HO^{-}$$

$$K_b = \frac{[HO^-]^2}{[A^-]_{init}} - [HO^-]$$

pplications

 $pH \rightarrow pOH \rightarrow [HO \ominus] \rightarrow K_b$

2. $K_b \rightarrow pH$

Strategy: $K_b \rightarrow [HO \ominus] \rightarrow pOH \rightarrow pH$

Problems: pH and K_b

1. pH \rightarrow K_b What is K_b if a 0.123 M solution of a weak base gives pH=10.62?

$$\int OH = 14 - 10.42 - 3.38$$

$$\int OHJ = 4.17x10^{-4} = x$$

$$V_b = \frac{x^2}{\text{Dase init}} = \frac{(4.17x10^{-4})^2}{a123}$$

$$= \sqrt{1.41x10^{-6}}$$

2. $K_b \rightarrow pH$ If K_b for a weak base is 1.6×10^{-5} , what is the pH of a 0.222 M solution of the

$$\begin{aligned}
&\text{Dase?} & \text{Logic: } K_b - 7 \text{ } \text{COH} \right\} - 7 \text{ } \text{OH} - 7 \text{ } \text{PH} \\
&\text{COH} = \sqrt{(1.6 \times 10^{-5})(0.222)} = 1.88 \times 10^{-3} \\
&\text{POH} = 2.73 \\
&\text{PH} = 14 - 2.73 = /11.27
\end{aligned}$$

- E. Relationship Between K_a and K_b for Conjugate acids/bases (Section 16.7, p 794)
- Review: stronger the acid, weaker the conjugate base (and vice versa)

$$K_a \times K_b = 1.0 \times 10^{-14}$$

Review Table 16.2

- 1. Given one, can solve for other.
- 2. Tables routinely provide only one; expect you to solve for other
- 3. Can rank relative strengths of acids(or bases) given info about conjugates
- 4. Toughest problem: given K_a for conjugate acid, calculate pH for a solution of weak base
 - Logic: $K_a \rightarrow K_b \rightarrow [HO \ominus] \rightarrow pOH \rightarrow pH$

$$K_{a} = \frac{[H_{3}0^{+}][A^{-}]}{[HA]} \qquad K_{b} = \frac{[OH^{-}][HA]}{[A^{-}]}$$

$$K_{a} = \frac{[H_{3}0^{+}][A^{-}]}{[HA]} \qquad K_{b} = \frac{[OH^{-}][HA]}{[A^{-}]}$$
So $K_{a}K_{b} = \left(\frac{[H_{3}O^{+}][A^{-}]}{[HA]}\right) \frac{[OH^{-}][HA]}{[A^{-}]} = [H_{3}O^{+}][OH^{-}] = 1.0 \times 10^{-14}$
Thus $K_{a}K_{b} = K_{w} = 10^{-14}$

Acid Strength	$\underline{\mathbf{K_a}}$	$\underline{\mathbf{K}_{\mathbf{b}}}$	Strength of Conjugate Base
Strong	$K_a > 1$	$K_b < \frac{K_b}{1 \times 10^{-14}}$	Nonbasic
Weak	$1 \times 10^{-14} < K_a < 1$ $K_a < 1 \times 10^{-14}$	$1 \times 10^{-14} < K_b < 1$	Weak
Nonacid	$K_a < 1 \times 10^{-14}$	$K_b > 1$	Strong base
·			

Problems Involving Relationship between Ka and Kb for Conjugated Acid/Base

Substance	HF	HN_3	HCN
K _a	6.8×10^{-4}	1.9×10^{-3}	4.9×10^{-10}
Relative Acidity	2	<u> </u>	3
Conjugate Base	FO	No	GCN.
Relative Basicity	2	3	1
K _b	1007x 10-11	5-20 x10-12	2.041105

- 1. Rank the acidity for the three weak acids, 1 being strongest. $H L_3 > I+F > HCN$
- 2. Rank the basicity, 1 being the stongest, for:

 NaCN

 NaF

 NaN₃

 O

 O

 F

 NA

 NaN₆

Substance	HF	HN_3	HCN
K _a	6.8×10^{-4}	1.9×10^{-3}	4.9×10^{-10}
Conjugate Base	FO	Nze	Θ_{CN}
K _b	1.47 110-11	5.26 x10-12	2041105

3. What is
$$K_b$$
 for N_3 ? $K_0 = 1 \times 10^{-14}$ $K_b = \frac{1 \times 10^{-14}}{1.9 \times 10^{-3}} = \frac{15.26 \times 10^{-12}}{1.9 \times 10^{-3}}$

4. What is pH for a solution that is 0.12 M in NaF?

Logic: Offecognize WB Situation

(a)
$$K_0 \rightarrow K_0 \rightarrow COH \rightarrow pOH \rightarrow pH$$
 $K_0 = \frac{1 \times 10^{-14}}{6.8 \times 10^{-4}} = \sqrt{1.47 \times 10^{-11}}$
 $C_{12} > 100K$, so simplify of $C_{12} = \sqrt{1.47 \times 10^{-11}}$

5. What is pH for a solution that is 0.20 M in NaCN?

Logic:
$$GWB$$

 $GK_0 - K_0 - COH] - 704 - 714$
 $K_0 = \frac{1 \times 10^{-14}}{4.9 \times 10^{-10}} = 2.04 \times 10^{-5}$

G.20 > 100 Kg, so simplify
$$GK$$

[OH] = $\sqrt{2.04 \times 10^{-5}}$ (0.20) = 2.02×10^{-3}
 $poh = 2.69$

[PI+= 11.31]

- C. Polyprotic Acids: More than One H⁺ Available (Section 16.5, p. 783) H₂SO₄, H₃PO₄, H₂CO₃,...
 - 1. Each H⁺ gets successively less acidic (by > 1000).

Relative Acidity	Acid		Conjugate Base	Relative Basicity
	H_3PO_4	$K_{a1} = 10^{-3}$	H_2PO_4	<u>*/</u>
	H_2PO_4	$K_{a2} = 10^{-8}$	$\overline{\mathrm{HPO_4}^2}$	•
	HPO_4^{-2}	$K_{a3} = 10^{-13}$	PO_4^{3-}	

- 2. As acids in water, only consider the first ionization.
- 3. When <u>base</u> is added, however, all H⁺'s come off (stoichiometry permitting) $H_3PO_4 + H_2O \Longrightarrow H_3O^+ + H_2PO_4$ But $H_3PO_4 + 3 OH^- \rightarrow 3 H_2O + PO_4^{3-}$
- 4. H₂SO₄: 1st strong, 2nd weak

water water
$$H_2SO_4 \rightarrow H^+ + HSO_4 = 2H^+ + SO_4^2 - Iot$$
 weak little

5. Some anions are complex: both acidic and basic!!

$$HCO_3 = H^+ + CO_3^2$$
 H_2O
 $OH^- + H_2CO_3$

Polyprotic Acid/Base Problems

1. Which is the stronger acid?

$$H_3PO_4$$
 H_2PO_4 H_3PO_4 H_3PO_4

2. Which is the stronger base?

$$\frac{1}{100^{3}}$$
 $\frac{1}{100^{2}}$ $\frac{1}{100^{2}$

16.8 Acid-Base Properties of Salts (Ionic Compounds)

$FeCl_2$	$MgBr_2$	NaCN
pH<7	pH=7	pH>7
acidic	neutral	basic

Recall: "salts" formed by acid/base reactions "salt"=ionic

Example: SA/SB
$$HCl + NaOH \rightarrow H_2O + NaCl$$
 neutral WA/SB $HF + NaOH \rightarrow H_2O + NaF$ basic SA/WB $HCl + NH_3 \rightarrow NH_4^+Cl^-$ acidic wA/WB $HF + NH_3 \rightarrow NH_4^+F^-$ can't tell

Observations:

- 1. Salts can be acidic, basic, or neutral.
- 2. Depends on strengths of acids/bases from which they form.
- 3. The "ions" in the salts are conjugates; may be acidic or basic!!

A. General Logic to Predict: Identify Ions individually

- 1. Cations: acidic or neutral
 - a. Group I or II cations are neutral

 Li⁺, Na⁺, K⁺, Mg²⁺, Ba²⁺, ...

 No impact on pH
 - b. Al³⁺, T-metal cations are <u>acidic</u> (see 16.5 pg.

water
$$Al^{3+} \rightarrow [Al(H_2O)_6]^{3+} \implies H^+ + [Al(OH)(H_2O)_5]^{2+}$$
Weak acid

- c. Ammoniums are acidic NH₄⁺, CH₃NH₃⁺ etc.
- 2. Anions: basic or neutral
 - a. Neutral: conjugates of strong acids Cl, Br, I, NO₃, ClO₄

b. basic: conjugates of weak acids (or non acids)
F, ClO, ...

3. "Amphoteric" anions derived from polyprotic acids: can be acidic or basic -not test responsible

HCO₃, H₂PO₄, HSO₃

B. Predicting acidic/neutral/basic (qualitatively)

$\boldsymbol{\mathcal{U}}$		(1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
Cation	anion	salt solution	<u>example</u>
Neutral	neutral	neutral	NaCl, KNO ₃
Acidic	neutral	acidic	NH ₄ Cl, Fe(NO ₃) ₃
Neutral	basic	basic	NaF, K(ClO)
Acidic	basic	can't predict	NH_4F , $Fe(N_3)_3$
•		(without K's)	

Predicting Acid/Base Character for Ionic Formulas

1. Predict as acidic, basic, neutral, or can't tell.

a.	Na_2SO_3	e. NaNO ₃
ا المدين	Nac neutal	Na® neutral
HICG6 Not	SC36 basic Basic	105 neutral [Neutral]
S.A.		
b.	$MgCl_2$	f. KN ₃
•	Mg2+ neutral [Neutral]	KO neutral
	Mg2+ neutral Neutral). C10 nonbase Leutral).	No Davic Baric
	HC1 strong	
c.	NH ₄ CN	g. AlCl ₃
	Putty acidic [can't]	A13+ acidic /Acidic/
•	En WB /tell	Cie neutral
:	HCN WA	
d.	$CoCl_2$	h. CH ₃ NH ₃ Br
-	Co ²⁺ acidic lacidic)	CH3 PH3 acidic Thating
	CIO neutal	BVE neutral [ACIONC]

2. Rank the following in terms of increasing pH, 1 being the lowest. (ID as strong/weak acid, strong/weak base, or neutral first!)

NaC1	CaF_2	$ZnBr_2$	HNO_3	KOH
Na®	Ca 24	Zn2+	Strong	ctrong
Cl^{Θ}	FO	BYS	acid	hase
Neutral	basic	weak		y vi y C
	weak	acid		
	(4)			5

16.6 Molecular Structure and Acid/Base Strength

- Why is something strong or weak? Acidic or Basic? Can we predict from structure, without K's?
- A. 3 Factors on Acid Strength
 - 1. H-A bond strength: stronger → less acidic
 - Why H-F (strong bond) is weak acid, but H-Cl, H-Br, H-I are strong acids
 - Row 2 bonds (H-F, O-H, N-H, C-H) usually stronger than row 3,4 analogs
 - 2. H-A polarity
 - Reflects electronegativity and polarity in the bond to the acidic hydrogen
 - o CH₄ non polar → nonacidic
 - o H-Br polar → acidic
 - 3. Stability of conjugate A \ominus
 - -electron love again a factor

 $CH_4 \rightarrow H^+ + \ominus CH_3$ Horrible. Carbon not electronegative, can't handle \ominus $HF \rightarrow H^+ + F \ominus$ Way stronger. Fluorine electronegative, can handle \ominus

- B. Practical Pattern
 - 1. Horizontal Periodic Pattern: Acidity increase left -> right

Note: e love, electronegativity/bond-polarity, anion stability all agree

2. Vertical Periodic Pattern: Acidity Increases Top → Bottom -due to decreasing H-A bond strength (even though contrary to e love)

Note: Basicity of conjugates linked!!

Horizontal: $\Theta_{NH_2} > F \Theta$ Vertical: $F \Theta > Cl \Theta$

C. "Oxoacids" (Nonmetal hydroxides)

*Many structures have OH

 $Z(OH)_y(O)_x$

KOH

 $H_2CO_3 = C(OH)_2O$

 $H_2SO_4 = S(OH)_2O_2$

Base

weak acid

strong acid

1. Metals with OH are basic

NaOH, Mg(OH)₂, etc.

NaOH \rightarrow Na \oplus + HO \ominus

2. Nonmetals with OH are acidic

F-O-H

 $F-O-H \rightarrow H^{\oplus} + FO^{\ominus}$

3. Oxoacid <u>acidity</u> increases as you move left → right across a row

$$Si(OH)_4 < P(OH)_3 < S(OH)_2 < Cl(OH)$$

- -electron love increases polarity of O-H bond
- 4. "Extra" Oxygens's increase acidity

HClO₄ > HClO₃ > HClO₂ > HClO

 $H_2SO_4 > H_2SO_3$

Strong

weak

strong weak

Why? Extra electron-loving oxygen

- 1. Stabilizes resulting anion
- 2. Polarizes O-H
- 3. Weakens O-H
- 5. Any Neutral Oxoacid with ≥ 2 extra O's is a strong Acid

Strong: H₂SO₄, HClO₃

weak: H₂CO₃, H₃PO₄, H₂SO₃

D. Carboxylic Acids: Famous class of oxoacids

E. "Hydrides"

1. M-H metal hydride → basic

$$NaH + H_2O \rightarrow H_2 + NaOH$$

2. Non-metal "hydrides" neutral or acidic

CH₄

H-C1

Polarity Reveral: Compare Na-H to H-Cl

Na HO HO CO

Predicting	Acid/Base	Properties	and	Trends
والمراهن في المراجع ا				

Why?

1.	Which are	acidic vs.	basic vs	neutral	in	water?
Ι.	Willoff aft	acture vs.	vasic vs.	nounai	111	water!

 $HClO_3$ CH₃COOH CH_3NH_2

2. Rank Acidity (1 strongest)

memory, oxoacid @ HF> 40> CHy, horizontal

3. Rank Acidity (1 strongest)

HClO₄ $HClO_3$ H_2SO_4 H_2SO_3 Rank Acidity (1 strongest)

 H_2S H_2O

 H_2Se

Rank Acidity (1 strongest)

HBr H₂Se H₃As H₄Ge

norizoutal

Which would be stronger?

(HBrO₃ ` HBrO $\mathbf{V}\mathbf{S}$ more oxygens

7. Rank Basicity (1 strongest)

 $F \Theta$ Θ^{OH} Θ_{NH_2}

Rank Basicity (1 strongest)

16.10 Lewis Acids and Bases: focus on electron pairs, not H⁺ movement

	posito, ilou il illo i ottibile
Lewis acid: e- pair acceptor	Covers "acid-base" chemistry that doesn't
Lewis base: e- pair donor	involve H ⁺

Water as Lewis Base: Uses an Oxygen Lone Pair

CI-H

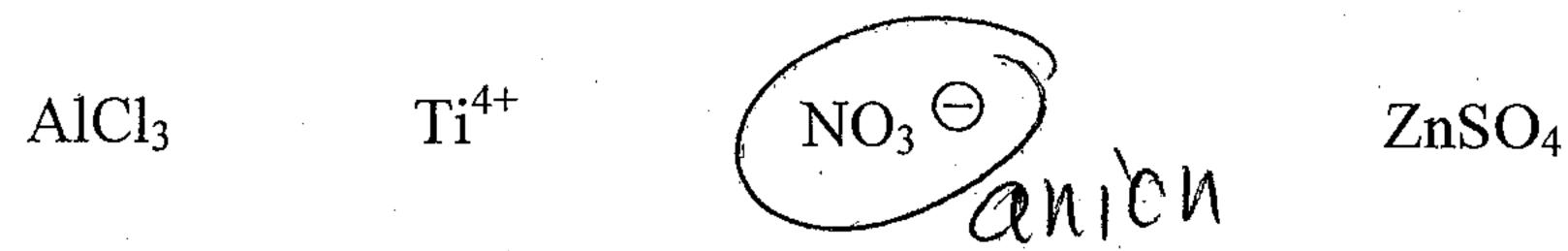
O-H

H

H

H

Other Examples


	<u></u>
a. H [⊕] ∴ io-H	b. H- $O:$ H_3C-Br $H-O-CH_3$ H H
$F_3B \xrightarrow{\ominus} F_4$ c.	$Al^{3+} \longrightarrow \begin{bmatrix} Al-\ddot{o}-H \\ H \end{bmatrix}^{3+}$ d. How metal hydrates form
$Zn^{2+} \longrightarrow \begin{bmatrix} H \\ N-H \end{bmatrix} Zh$ e. $Zn^{-N-H} \end{bmatrix}$	

Notes: 1. A "base" must have a lone pair (F, OH₂, NH₃,...)

- 2. All <u>anions</u> have lone pairs \rightarrow Lewis Base potential
- 3. An "acid" must be able to accept a lone pair -all cations can!!
 -some neutrals: BF₃, SO₂, ...

Lewis Acid/Base Problems

1. Which would <u>not</u> be a Lewis acid?

2. Identify the Lewis acid and Lewis Base

a.
$$Fe^{3+} + 6 H_2O \rightarrow [Fe(H_2O)_6]^{3+}$$

c. Br - $CH_3 + I$ $\rightarrow Br$ $\hookrightarrow + I$ - CH_3

b.
$$H^{+} + CH_{3}NH_{2} \rightarrow CH_{3}NH_{3}$$

d. $Ni^{2+} + 4N_{3} \rightarrow [Ni(N_{3})_{4}]^{2-}$

LA LU

CH. 16 Acid-Base Chemistry Math Key Equations, Numerical Relationships

1. $[H^+][HO^-] = 1.00 \times 10^{-14}$

2.
$$pH = -log[H^+]$$

 $[H^{+}] = 10^{-pH}$ (on calculator, enter -pH, then punch the 10^{x} button)

$$pOH = -log[OH]$$

 $[OH] = 10^{-pOH}$ (on calculator, enter -pOH, then punch the 10x button)

3.
$$pH + pOH = 14$$

$$pH = 14 - pOH$$

Weak acid problems

$$K_a = [H^+][A]/[HA]$$

but when HA is placed in water, $[H^{+}] = [A^{-}]$ so:

When the simplifying assumptions are used:

4.
$$K_a = \frac{[H^+]^2}{[HA]_{init}}$$

5. $[\mathbf{H}^{\oplus}] = \sqrt{\mathbf{K}_{a} \times [\mathbf{H}\mathbf{A}]_{init}}$

When the first simplifying assumption is not used (but the second one is)

6.
$$K_a = \frac{[H^+]^2}{[HA]_{init} - [H^+]}$$

[H ⁽⁺⁾] requires a quadratic solution

7. Quadratic Equation: for
$$ax^2 + bx = c = 0$$

$$\mathbf{x} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Weak base problems

 $K_b = [Base-H^+][OH^-]/[Base]$ but when Base is place in water, $[Base-H^+] = [OH^-]$ so:

When the simplifying assumptions are used:

$$8. K_b = \frac{1}{[Base]_{init}}$$

9. $[HO^{\bigcirc}]=$ $\sqrt{K_b \times [Base]_{init}}$

When the first simplifying assumption is not used but the second one is

10.
$$K_b = \frac{[HO^-]^2}{[Base]_{init} - [HO^-]}$$
 [HO \bigcirc] requires a quadratic solution

11. $K_aK_b = 10^{-14}$ for a conjugate acid/base pair.

Note: This relationship is routinely used when a K value for your acid or base is not provided, but the K value for it's conjugate is. So get it indirectly.

Some Calculation Logic Scenarios

1. Strong acid
$$\rightarrow$$
 pH [Strong acid] \rightarrow [H $^{\oplus}$] \rightarrow pH

2. Strong base
$$\rightarrow$$
 pH [Strong base] \rightarrow [HO \ominus] \rightarrow pOH \rightarrow pH

3. Weak acid +
$$K_a \rightarrow pH$$
 [Weak acid] + $K_a \rightarrow [H^{\oplus}] \rightarrow pH$

4. pH of weak acid
$$\rightarrow K_a$$
 pH \rightarrow solve for [H \oplus] $\rightarrow K_a$

5. Weak base
$$+ K_b \rightarrow pH$$
 [Weak base] $+ K_b \rightarrow [HO^{\bigcirc}] \rightarrow pOH \rightarrow pH$

6. pH of weak base
$$\rightarrow$$
 K_b pH \rightarrow solve for [HO $^{\bigcirc}$] \rightarrow pOH \rightarrow pH

7. Weak base +
$$K_a$$
 of conjugate acid \rightarrow pH $K_a \rightarrow K_b \rightarrow [HO^{\ominus}] \rightarrow pOH \rightarrow pH$