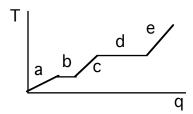
JASPERSE CHEM 210 PRACTICE TEST 1

VERSION 1


Forces and Intermolecular Forces between Ions and Molecules Solutions and Their Colligative Properties Chemical Kinetics: Rates of Reactions

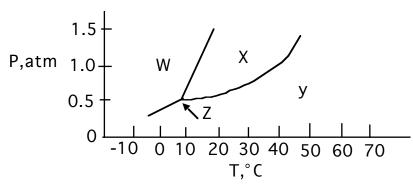
Formulas for First Order Reactions: $kt = \ln ([A_o]/[A_t])$

 $kt_{1/2} = 0.693$

- 1. Which of the following would have the <u>highest molar heat of vaporization</u>?
 - a. I₂

- b. Br₂
- c. Cl₂
- d. F₂
- 2. Which of the following would have the <u>highest vapor pressure</u> at 25°C?
 - a. C₄H₁₀
- b. NaCl
- c. $C_6H_{12}O_6$
- d. C₄H₉NH₂
- 3. Arrange CH₃OH, NaF, and CO₂ in order of increasing boiling point.
 - a. $CH_3OH < CO_2 < NaF$
 - b. $CO_2 < NaF < CH_3OH$
 - c. $CO_2 < CH_3OH < NaF$
 - d. $NaF < CO_2 < CH_3OH$
 - e. none of the above
- 4. Region "c" on the heating curve shown (Temperature versus heat, "q") corresponds to:
 - a. a pure gas increasing in temperature
 - b. a liquid increasing in temperature
 - c. a solid increasing in temperature
 - d. a solid melting
 - e. a liquid boiling

- 5. Which of the following would have the <u>highest boiling point</u>?
 - a. CH₃CH₂CH₂OH
- b. CH₃CH₂OCH₃
- c. CH₃CH₂OH
- d. CH₃CH₂CH₂CH₃


6. In which phase does the substance whose phase diagram is shown below exist at 0° C and atmospheric pressure?

a. gas

b. liquid

c. solid

d. supercritical fluid

7. Which of the following would have the greatest surface tension at 25°C?

a. CH₄

b. CH₃F

c. CH₃OH

d. CO

8. Which of the following shows a relatively high boiling temperature due to <u>hydrogen</u> bonding?

a. CH₃OH

b. CH₃SH

c. CH₃OCH₃

d. SnH₄

9. Which of the following substances has London dispersion forces as its <u>only</u> <u>intermolecular</u> force?

a. HCN

b. CH₄

c. NH₃

 $d. H_2S$

10. Which is a gas at room temperature? (You may apply memory as well as principle to answer this question!)

a. Na₂S

b. NO₂

c. H₂O

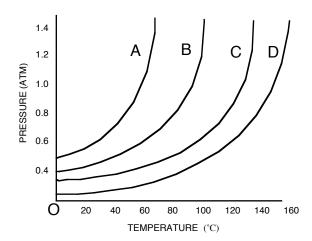
d. Fe

11. Which is a brittle, high-melting solid but dissolves in water?

a. I₂

b. K₂CO₃

c. $C_{12}H_{26}$


d. Al

12. Which of the following statements is <u>true</u>?

- a. All of the molecules in the liquid state have the same energy
- b. When evaporation occurs the average kinetic energy of the molecules remaining in the liquid state is lower than that of the molecules that left, resulting in cooling of the liquid
- c. The vapor pressure of a liquid decreases as the temperature increases
- d. The rate of evaporation is faster for substances with lower vapor pressures than for substances with higher vapor pressures

13. In a liquid, the attractive intermolecular forces are:

- a. weaker than in a substance that is a gas at the same temperature
- b. always insignificant and unable to keep molecules close together
- c. so strong that molecules are locked close together and are unable to move
- d. strong enough to hold molecules relatively close but <u>not</u> strong enough to keep molecules from moving past each other
- 14. Which of the following statements is <u>false</u> for the vapor pressure/temperature diagram shown:?

- a. the vapor pressure for C at 60° is about 0.4 atm
- b. substance D has the weakest binding forces
- c. the normal boiling point for A is about 58°
- d. to achieve a vapor pressure of 0.4 atm, substance D must be heated to about 100°C

15. Which of the following statements is false?

- a. diamond is higher melting than CH₃CH₂OH (alcohol)
- b. solid glucose is less dense than melted, liquid glucose
- c. CH₂Br₂ is more volatile than CBr₄ at room temperature
- d. evaporation of freon-12 absorbs heat from the surroundings

16.		•	solves readily in wa	iter due to		
	b. с.	strong solute-solutions strong solute-solute	lvent interactions vent interactions			
17.	Which	of the following s	substances would be	the most solu	able in water?	
	a. Ar	b.	CH ₃ CH ₂ CH ₂ CH ₃	c. Na	C1	d. CH ₄
18.	a. theb. thec. the	melting point wo boiling point wou vapor pressure w	ıld decrease			water?
19.	a. C₅b. C₅c. CC	relationship is fal H ₁₁ OH > C ₁₁ H ₂₃ O H ₁₁ OH > C ₅ H ₁₂ Cl ₄ > CaCl ₂ I ₃ OCH ₃ > CH ₃ CC		vater?		
20.	a. In diffb. Fo incc. An	a saturated solution fers from the rate r solids that dissolute reasing disorder by and every solid	statements is true? on at equilibrium, the at which solid mate we in water, the print that dissolves in wallid always decrease	rial is reforminary reason is ter does so in	ng because dissolv an exothermic v	ving results in
21.	Which	of the following s	should be least misc	ible in carbon	tetrachloride, C	CCl ₄ ?
	a. C ₆ H	14 b.	СН ₃ ОН	c. Br ₂	d. C ₃ I	H_8
22.		one of the follow g/freezing point?	ing 0.1 M aqueous s	solutions woul	ld have the lowe	est

a. CH₃CH₂OHb. AlPO₄c. NaNO₃d. CaBr₂

- 23. Consider the following four solutions, and choose which statement is false:
 - a) 1 L of Pure Water
 - b) 1 L of water with 0.15 moles of CH₃OH added
 - c) 1 L of water with 0.15 moles of CH₃CH₂OH
 - d) 1 L of water with 0.15 moles of NaCl added
 - a. The pure water solution will have the highest vapor pressure
 - b. The solution with 0.15 moles of CH₃OH will have the same vapor pressure as the solution with 0.15 moles of CH₃CH₂OH
 - c. The solution with 0.15 moles of CH₃OH will have higher vapor pressure than the solution with 0.15 moles of NaCl
 - d. The solution with 0.15 moles of NaCl will have the highest vapor pressure
- 24. Which of the following statements is false?
 - a. C₆H₁₄ has very low solubility in water because it can't hydrogen bond to itself or to water
 - b. NaCl has poor solubility in CCl₄ because strong solute-solute interactions are replaced by feeble solute-solvent interactions, making things strongly endothermic
 - c. C₆H₁₄ has good solubility in CCl₄. Neither original nor final intermolecular interactions are very strong.
 - d. CH₃OCH₃ has very low solubility in water because it can't hydrogen bond to itself or to water
- 25. If the reaction $2A + 3D \rightarrow \text{products}$ is first-order in A and second-order in D, then the rate law will have the form, rate =
 - a. k[A][D]
- b. $k[A]^2[D]^3$ c. $k[A][D]^2$ d. $k[A]^2[D]$

- e. $k[A]^2[D]^2$
- 26. Consider the reaction $A + B \rightarrow 4C$, if the rate of disappearance of A is 0.16 mol/min, what is the rate of formation of C?
 - a. 0.04 mol/min
- b. 0.16 mol/min c. 0.32 mol/min
 - d. 0.64 mol/min

- e. none of the above
- 27. What is the rate law for the reaction $A + 3B \rightarrow products$

Initial [A]	Initial [B]	rate
0.273	0.763	3.0
0.273	1.526	3.0
0.819	0.763	27.0

- a. rate = k[A][B] b. rate = k[A] c. $rate = k[A]^2$ d. $rate = k[A]^3$

e. none of the above

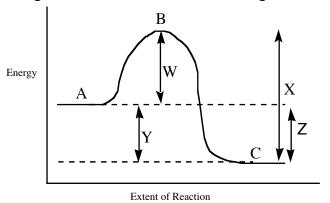
28. What is the rate constant k (ignore units) for the reaction shown, if the reaction is first order in both A and B. $2A + 3B \rightarrow 2C$

Initial [A]	Initial [B]	rate
0.23	0.17	0.33

- a. 8.4
- b. 5.6
- c. 0.67
- d. 0.18
- 29. What is the rate law for the reaction $2A + 5B \rightarrow products$

Initial [B]	rate
0.234	6.4×10^4
0.234	1.3×10^5
0.468	2.6×10^5
	0.234 0.234

- a. rate = k[A][B]
- b. rate = k[B] c. rate = $k[A][B]^2$ d. rate = $k[A][B]^3$


- e. none of the above
- 30. If the rate law for a reaction is rate = $k[A]^2[B]$, what is the effect on the overall rate of doubling the concentration of both A and B?
 - a. rate increases by 2
- b. rate increases by 4
- c. rate increases by 8

- d. rate increases by 16
- e. none of the above
- 31. A \rightarrow B is a first order reaction. If k = 6.30 x 10⁻⁴ s⁻¹, and the initial [A] = 0.100 M, what is [A] after 1000 s?
 - a. 0.0533
 - b. 0.0234
 - c. 0.188
 - d. 0.427
 - e. 0.000100

32. A \rightarrow B is a first order reaction. What is the rate constant for the reaction (in s⁻¹).

	time (sec)	[A] (M)	
	0.0	1.60	
	5.0	0.80	
	10.0	0.40	
	15.0	0.20	
	20.0	0.10	
a) 0.013	b) 0.030	c) 0.14	d) 3.0

33. For the reaction diagram shown, which of the following statements is true?

- a. Line W represents the ΔH for the forward reaction; point B represents the transition state
- b. Line W represents the activation energy for the forward reaction; point B represents the transition state
- c. Line Y represents the activation energy for the forward reaction; point C represents the transition state
- d. Line X represents the ΔH for the forward reaction; point B represents the transition state
- 34. Given the mechanism shown, what would be the rate law?

2 NO
$$\rightarrow$$
 N₂O₂ fast, equilibrium
N₂O₂ + Br₂ \rightarrow 2NOBr slow

a. rate =
$$k[NO]^2[Br_2]$$

b. rate =
$$k[N_2O_2]^2 [Br_2]$$

c. rate =
$$k[NO]^2[N_2O_2][Br_2]$$

d.
$$rate = k[NO][Br_2]$$

e.
$$rate = k[NO]$$

- 35. A catalyst increases the reaction rate by
 - a. always reducing the number of elementary steps in the mechanism
 - b. always making the overall transition state higher in energy
 - c. changing the mechanism to lower the overall activation energy barrier

36. In any multistep	reaction mechanism	, the rate of the overall r	eaction is determined	by the
rate of the	step in	the mechanism.		
a) first	b) last	c) slowest	d) fastest	

- 37. Which of the following statements is true?
 - a. the activation energy always increases as temperature rises
 - b. the activation energy always decreases as temperature rises
 - c. the rate constant always decreases as temperature rises
 - d. the rate constant always increases as temperature rises
 - e. the rate constant always increases as the activation energy increases
- 38. Which of the following statements is <u>false</u> regarding collision theory?
 - a. As temperature rises, a higher number of bimolecular collisions result in successful reaction
 - b. As the concentration of either chemical increases, the bimolecular collision frequency increases
 - c. Not all bimolecular collisions result in successful reactions
 - d. Elementary steps are routine that are either termolecular (three molecules colliding at once) or tetramolecular (four molecules colliding at once)

Jasperse Chem 210 Practice Test1 Version 1 Answers

- 1. A
- 2. A
- 3. C
- 4. B
- 5. A
- 6. C
- 7. C
- 8. A
- 9. B
- 10. B
- 11. B
- 12. B
- 13. D
- 14. B
- 15. B
- 16. C
- 17. C
- 18. B
- 19. C
- 20. B
- 21. B
- 22. D
- 23. D
- 24. D
- 25. C
- 26. D
- 27. C
- 28. A
- 29. C
- 30. C
- 31. A
- 32. C
- 33. B
- 34. A 35. C
- 36. C
- 37. D
- 38. D