JASPERSE CHEM 210 PRACTICE TEST 3

VERSION 2

Ch. 17: Additional Aqueous Equilibria

Ch. 18: Thermodynamics: Directionality of Chemical Reactions

Key Equations:

For weak acids alone in water:	For weak bases alone in water:
$[H^+] = \sqrt{K_a x [WA]}$	$[OH^-] = \sqrt{K_b x [WB]}$
pZ= -logZ General definition for p of anything	pH + pOH = 14
$[H^+][HO^-] = 1.00 \times 10^{-14}$	$K_aK_b=1.00 \times 10^{-14}$ for conjugate acid/base pair
For Buffer: $pH = pK_a + log[base]/[acid]$ Henderson-Hasselbalch Equation	$\Delta S^{\circ} = S^{\circ} \text{ (products)} - S^{\circ} \text{ (reactants)}$
$\Delta G^{\circ} = G^{\circ} \text{ (products)} - G^{\circ} \text{ (reactants)}$	$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} \qquad (T \text{ in Kelvin})$

- 1. A solution containing which one of the following pairs of substances could be a buffer?
 - a. NaI, HI
 - b. KBr, HBr
 - c. NH₄Cl, HCl
 - d. KOCl, HOCl
 - e. None of the above
- 2. Determine the pH of a solution prepared by mixing 45 mL of 0.183 M KOH with 65 mL of 0.145 M HCL
 - a. 1.31
 - b. 2.92
 - c. 0.74
 - d. 1.97
 - e. none of the above
- 3. Consider a solution prepared by dissolving 0.35 mol of CH₃NH₃Cl (methylamine hydrochloride) in 1.00 L of 1.1 M CH₃NH₂ (methylamine). If 10 mL of 0.10 M HCl is added to this buffer solution, the pH of the solution will _____ slightly because the HCl reacts with the _____ present in the solution.
 - a. Increase, CH₃NH₃⁺
 - b. Increase, CH₃NH₂

 - c. Decrease, CH₃NH₂
 d. Decrease, CH₃NH₃⁺

4.	Consider a solution containing 0.80 M NaF and 0.80 M HF. Calculate the moles of HF
	and the concentration of HF after addition of 20.0 mL of 0.40 M HCl to 60.0 mL of this
	buffer solution.

- a. 0.056 moles, 0.70 M
- b. 0.056 moles, 0.93 M
- c. 0.048 moles, 0.60 M
- d. 0.040 moles, 0.67 M
- e. none of the above.
- 5. What change will be caused by addition of 0.10 moles of HNO₃ to a 1 liter solution containing 0.50 moles of KF and 0.50 moles of HF?
 - a. The concentration of hydronium ion will significantly increase, and the pH will drop by several pH units
 - b. The concentration of fluoride will increase as will the concentration of hydronium ion
 - c. The concentration of HF will be decreased and the concentration of fluoride will be increased
 - d. The concentration of fluoride will be decreased and the concentration of HF will be increased
 - e. The fluoride ion will precipitate out of solution
- 6. What will be the pH if 0.20 moles of NaOH is added to a 1.0 L solution originally containing 0.60 moles of HNO₂ and 0.40 moles of NaNO₂? (HNO₂ $K_a = 4.5 \times 10^{-4}$)
 - a. 2.31
 - b. 3.17
 - c. 3.52
 - d. 8.97
 - e. none of the above
- 7. Determine the pH of a solution prepared by mixing 40.0 mL of 0.60 M HCl with 80.0 mL of 0.30 M NaOCl $\,$ (HOCl $K_a=3.5$ x $10^{-8})$
 - a. 2.3
 - b. 5.6
 - c. 4.1
 - d. 9.3
 - e. none of the above

- 8. Which of the following statements is <u>false</u>, regarding a solution containing 0.20 moles of the weak acid HOCl.
 a. Adding NaOH will both increase the dissociation of HOCl, and decrease [H⁺]
 b. Adding HCl will both decreased the dissociation of HOCl and decrease [OCl⁻]
 - c. Adding NaOCl will both increase the dissociation of the original HOCl, and will increase [H⁺]
 - d. Adding NaCl will not affect either the dissociation of the original HOCl or the solution pH
- 9. If the solid CuF_2 has a solubility of 0.0020 mol/L, what is the value of K_{sp} ?
 - a. 1.8 x 10⁻⁷
 - b. 4.0 x 10⁻⁶
 - c. 3.2 x 10⁻⁸
 - d. 8.0 x 10⁻⁹
 - e. none of the above
- 10. Calculate the pH of a solution containing 0.818 M acetic acid ($K_a = 1.76 \times 10^{-5}$) and 0.172 M sodium acetate.
 - a. 4.08
 - b. 5.43
 - c. 8.57
 - d. 8.37
- 11. Determine the pH of a solution prepared by mixing 40 mL of 0.30 M KOH with 30 mL of 0.40 M HCl.
 - a. 6.3
 - b. 7.0
 - c. 8.1
 - d. 5.8
 - e. none of the above
- 12. Which of the following combinations would give a pH of lower than 7.00 at the "equivalence point" (when equal moles of each have been added)
 - a. $HClO_4 + NaF$
 - b. $HNO_3 + KOH$
 - c. NH₄Cl + NaOH
 - d. HF + NaOH
 - e. None of the above

- 13. An initial pH of 10.7 and an equivalence point at pH = 4.5 corresponds to a titration curve for a
 - a. Strong acid to which strong base is added
 - b. Strong base to which strong acid is added
 - c. Weak acid to which strong acid is added
 - d. Weak base to which strong acid is added
 - e. Weak base to which strong base is added
- 14. In a titration experiment it was found that a 50.0 mL sample of HNO₃ required 66.0 mL of 0.80M NaOH to reach the equivalence point. What was the molarity of the HNO₃ sample?
 - a. 0.61 M
 - b. 0.86 M
 - c. 1.06 M
 - d. 1.24 M
 - e. none of the above
- 15. How many mL of 0.48 M NaOH will it take to neutralize 36 mL of 0.40 M HCl?
 - a. 43 mL
 - b. 30 mL
 - c. 69 mL
 - d. 14 mL
 - e. none of the above
- 16. Hydrazoic acid HN_3 has $K_a = 2.0 \times 10^{-5}$. What is the concentration of the azide anion N_3 in a solution that is 0.50M in HN_3 and 0.40M in HNO_3 ?
 - a. 3.5×10^{-3}
 - b. 2.5 x 10⁻⁵
 - c. 2.0×10^{-6}
 - d. 8.0 x 10⁻⁶
 - e. none of the above
- 17. Which of the following salts would have it's solubility influenced by pH, such that solubility increases at low pH?
 - a. $Ca(NO_3)_2$
 - b. CaF₂
 - c. CaCl₂
 - d. CaBr₂
 - e. CaI₂

- 18. Calculate the concentration of iodide ions in a saturated solution of PbI₂ ($K_{sp} = 1.4 \times 10^{-8}$)
 - a. $1.5 \times 10^{-3} \text{ M}$
 - b. 3.0 x 10⁻³ M
 c. 4.2 x 10⁻² M

 - d. 3.5 x 10⁻⁹ M
 - e. none of the above
- 19. KCN is completely soluble. What would be the molar solubility of AgCN when added to a solution that was 0.010 M in KCN, if $K_{sp} = 1.2 \times 10^{-16}$ for AgCN?
 - a. 5.2 x 10⁻¹¹ M
 - b. 1.1 x 10⁻⁸ M
 - c. 1.2 x 10⁻¹⁴ M
 d. 4.6 x 10⁻¹³ M

 - e. none of the above
- 20. Which one of the following substances, when added to a saturated solution of Pb(OH)₂, will decrease the solubility of Pb(OH)₂ in the solution?
 - a. NaNO₃
 - b. H₂O₂
 - c. HNO₃
 - d. $Pb(NO_3)_3$
- 21. Which of the following reactions would have a positive value for ΔS° ?

 - a. $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ b. $2NO_2(g) \rightarrow N_2O_4(g)$ c. $BaF_2(s) \rightarrow Ba^{+2}(aq) + 2F(aq)$ d. $H^+(aq) + F(aq) \rightarrow HF(aq)$
- 22. Calculate the entropy for $\text{Cl}_2(g)$ (in J/mol•K), given the overall ΔS° for the following reaction, and the available S° values tabulated:

2NO (g) + Cl₂ (g)
$$\rightarrow$$
 2NOCl (g) $\Delta S^{\circ} = -117 \text{ J/mol} \cdot \text{K}$

Substance	<u>S</u> °
NO (g)	211
$NO_{2}(g)$	240
NOCl (g)	264
$N_2O(g)$	220

- a. 106
- b. 11
- c. 223
- d. -223

- 23. Which of the following would have the greatest entropy?
 - a. C_3H_8O (1) at $20^{\circ}C$
 - b. $C_5H_{12}(g)$ at 20°C
 - c. $C_3H_8(1)$ at 80°C
 - d. $C_4H_{10}(g)$ at 80°C
 - e. $C_5H_{12}^{10}$ (g) at 80°C
- 24. What is the value of ΔS° (in J/mol•K) for this reaction at 25°C?

$$C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$$

Given: $\Delta G^{\circ} = +91 \text{ kJ/mol}$ $\Delta H^{\circ} = +131.4 \text{ kJ/mol}$

- a. -136
- b. 1.6
- c. -1.6
- d. 136
- e. none of the above
- 25. Which of the following statements is false?
 - a. The driving force behind the expansion of a gas is the dispersal of matter
 - b. Exothermic reactions are often product-favored because energy is dispersed to the surrounding
 - c. The entropy of the universe is increasing, but the enthalpy of the universe is constant
 - d. Both the entropy and the enthalpy of the universe are constant
- 26. Consider a pure, crystalline solid being heated from absolute zero to some very high temperature. Which one of the following processes produces the greatest increase in the entropy of the substance?
 - a. Melting the solid
 - b. Heating the liquid
 - c. Heating the gas
 - d. Heating the solid
 - e. Boiling the liquid
- 27. Based on your knowledge of chemical reactions, which of the following processes has a <u>negative</u> standard free energy change at 25°C

Reaction 1: $2Na + Cl_2 \rightarrow 2NaCl$ Reaction 2: $2H_2 + O_2 \rightarrow 2H_2O$

Reaction 3: $H_2\tilde{O}(1) \stackrel{?}{\rightarrow} H_2O(s)$ at 25°C

- a. Reaction 1 only
- b. Reaction 2 only
- c. Reaction 3 only
- d. Reactions 1 and 2 only
- e. Reactions 1 and 3 only

- 28. For a reaction to be product favored at high temperature but not at low temperature, what must be true for the signs of ΔH° and ΔS° ?
 - a. Both are positive
 - b. Both are negative
 - c. ΔH° is positive and ΔS° is negative
 - d. ΔH° is negative and ΔS° is positive
- 29. What is the value for ΔG° , at 25°C?

A (aq) + B (aq)
$$\rightarrow$$
 C (g) + D (aq) $\Delta H^{\circ} = -54.0 \text{ kJ/mol} \Delta S^{\circ} = +87.0 \text{ J/mol} \bullet K$

- a. -65 kJ/mol
- b. -80 kJ/mol
- c. $+2.6 \times 10^4 \text{ kJ/mol}$
- d. -56 kJ/mol
- e. none of the above
- 30. Calculate the ΔG° (in kJ/mol) for the following reaction, given the tabulated $\Delta G_{\rm f}^{\circ}$ values:

$$C_4H_6(g) + 2H_2O(g) \rightarrow C_4H_8(OH)_2(l)$$

Substance	$\Delta G_{\rm f}^{\circ} (k \text{J/mol})$
$C_4H_6(g)$	-23
$H_2O(g)$	-229
$C_4H_8(OH)_2(1)$	-522

- a. -41
- b. -270
- c. +48
- d. +322
- e. none of the above
- 31. Under which temperature conditions will the following reaction be product favored?

A (aq) + B (aq)
$$\rightarrow$$
 C (s) + D (aq) $\Delta H^{\circ} = -34.0 \text{ kJ/mol} \Delta S^{\circ} = -57.0 \text{ J/mol} \bullet \text{K}$

- a. Above 273°C
- b. Below 323°C
- c. Above 552°C
- d. Below 705°C
- e. At all temperatures

- 32. Which of the following statements is false?
 - a. For a reaction at equilibrium, $\Delta G = 0$ in every case
 - b. All reactions in which the entropy of the universe increases are product-favored
 - c. All reactions in which the entropy of the system increases are product-favored
 - d. Some reactions that are product-favored at room temperature may not be product-favored at higher temperatures.
 - e. It is possible for a reactant-favored process to proceed to the product side, but only if it is continuously fueled by some other source of free energy, such that the combined ΔG is negative and the overall entropy of the universe still increases
- 33. The conversion of solid CO_2 ("dry ice") to CO_2 gas is product-favored at room temperature. What would be the signs for ΔG , ΔH , and ΔS at room temperature?

$$CO_2(s) \rightarrow CO_2(g)$$

- a. ΔG is positive, ΔH is positive, and ΔS is positive
- b. ΔG is negative, ΔH is positive, and ΔS is positive
- c. ΔG is positive, ΔH is positive, and ΔS is negative
- d. ΔG is negative, ΔH is negative, and ΔS is positive
- e. ΔG is negative, ΔH is positive, and ΔS is negative

Jasperse Chem 160 Answers, Test3 Version 2

1. 2.	D		
2. 3.	D		
4.	A		
5.	D		
	C		
7.	C		
8.	C		
9.	C		
10.	A		
11.	В		
12.	A		
13.	D		
14.	C		
15.	В		
16.	В		

17. B