ORGANIC CHEMISTRY I PROBLEMS, USING Klein 4

- Book: Organic Chemistry (4th Edition) by David Klein. Published by Wiley.
- Google for solutions manual:
- Other Textbooks: <u>https://web.mnstate.edu/jasperse/Chem350/Other-Textbooks.html</u>

<u>Chapter</u>	Klein	Klein 4 Problems	Klein 4 Problems			
<u>Topic</u>	<u>Chap</u>	<u>Back of the Chapter</u> Screened by Jasperse	In the Chapter Screened but not perfectly! ©©			
Test 1						
(Wade 1-3) Review of Gen	1	32 ("constitutional" = "structural"), 33, 34a, 35,	Isomers 1, 2.			
Chem	-	36, 39a-e, 41, 42(skip b), 43, 44, 45, 46, 47, 48,	Lewis structure 3-6,			
		49, 50, 52, 56, 62(only rank the 3 left-most structures), 63, 64, 65, 66, 71, 72, 73,	Polarity: 10-12			
			Structural formulas: 13,14			
			Geometry: 24-27			
Malaanlan	2	24, 27, 40, 42, 45, 47, 40, 51h a, 52h a f, 52, 55	Intermolecular Forces: 31-31			
Representations	2	54-57, 40, 45-45, 47-49, 510,c, 520,e,i, 55-55, 58, 64-70	Bond-line structures: 4-6			
representations			Lone pairs: 8-11			
Acids	3	37, 38, 41, 43, 44a,b, 45, 46a,b, 47b,e,g,h, 49d,	Mech: 1-3			
and Bases		56, 64	Electronegativity: 13, 14			
			Ranking: 23a,c,e,h,I, 24c, 26			
			Equilibria: 30a,b,d,e Will it happen? 32a h d			
Chemical	6	37-40	Arrow-pushing: 11,12			
Reactivity and			Drawing arrows: 15,16			
Mechanisms						
Alkanes	4	36a-d,g, 37, 38, 40a,b, 42, 43, 45, 47a, 48a, 51,	Nomenclature: 1-5, 8a,c,d, e, f, h, i, j, 9,			
Cycloalkanes		52a-c, 53, 56, 58, 62, 64-68	Structure isomers: 14,15			
			Cyclohexane chairs: 21-26, 28, 29, 30-32			
1 est 2 (Wade 4-6)						
Chemical	6	19b, 26a-f, 28, 29, 37-40, 44, 47, 48	Enthalpy: 1			
Reactivity and			Arrow-pushing: 11,12			
wiechanisms			Drawing arrows: 15,16			
Radical Reactions	10	25, 45	5-7			
		Mech: 48, 57 Selectivity: 26, 29, 34a-c f, 38, 40	Mech: 8, 9, 10, 11 Selectivity: 12, 13			
		Resonance: 24	Selectivity. 12, 15			
Stereoisomerism	5	31, 32, 36, 37a,b, 38a-c,e, 39a-e, 44b,c, 45, 46a b 50, 51, 53b-d 55, 57, 58, 60, 61-63	Chiral centers: 4-6 Mirrors: 7.8			
		-104,0, 50, 51, 550 4 , 55, 57, 50, 00, 01 05	R/S: 9-10			
			Relationship: 19,20 Meso: 24, 25			
Alkyl Halides:	7	47, 49a, 53, 55, 56, 58, 62, 64a, 72, 75b-e,h,	SN2: 3-6			
Nucleophilic		76a,c,f, 77a-c, 78a-c, 79, 85, 87, 88	E2: 12a-c, e,f, 15a,b, 17, SN1: 21 (all), 23, 24, 25, 26			
+ Elimination			Recognition: 28b, f, g, h, I, j, k, l, m, n			
Ethers	13		1-3			
Test 3						
(Wade 7-8)	14					
IK and Mass Spec	14	Calculating Elements of Unsaturation: 42b, 48, F/Z: 75	Calculating Elements of Unsaturation: 30, 31 F/Z: 29, 30			
Alkyl Halides:	7		E2: 12, 13, 15, 16, 17,19			
Substitution			Recognition: 28b, c, Alcohol dehydration: 33b 34b d			
+ Elimination						
Alkenes and	8	HBr (mechanism): 68, 71 HBr-perovide: 57, 76	Nomenclature: 1, 2 HBr (mechanism): 7.8			
Additon Reactions		H2O/H+ (mech): 51a,b, 63, 83,	HBr-peroxide: 42-44			
		BH3-THF/NaOH/H2O2: 65, 73 H2/Pt: 55 74 801 91	H2O/H+ (mech): 14, 15, , BH3-THE/NaOH/H2O2: 20, 21			
		Br2/H2O: 72, 85	H2/Pt: 22, 23,			
1	1	CH3CO2H/H2O: 64d	Br2/H2O: 25-27.			

		OsO4/H2O2:	CH3CO2H/H2O: 28-30,		
		O3/Me2S: 67, 81, 93	OsO4/H2O2: 31		
		Product prediction: 49, 50, 64, 72	O3/Me2S: 32-34,		
		Synthesis design: 59, 61, 70, 75, 42-44, 57, 76,	Product prediction: 35-38,		
		45, 46, 53, 77, 84	Synthesis design: 39-41,		
Radical Reactions	10	HBr/peroxides: 47	IBr/peroxides: 21, 22,		
Test 4					
Wade 15-17					
Conjugated Pi	16	HBr Additions to Conjugated Dienes: 34-38,	HBr Additions to Conjugated Dienes: 6-11		
Systems and		65, 67	Diels Alder Reactions: 13-15		
Pericyclic		Diels Alder Reactions: 42-44, 57, 58, 61-63, 66			
Deastions					
Reactions	17	N 1 (24.25.20	NT 1.4 1.5		
Aromatic	17	Aromatic or Antioromatic: 220, 20, 47, 48, 52	Nomenciature: 1-5 Aromatia an Antiaromatia: 11, 12		
Compounds		Afomatic of Antiatomatic: $52c$, 59 , 47 , 46 , 52	Long Dairs in Aromatics: 12, 15		
		64 66	Operations on the side chain (NBS_KMnO4): 18-19		
		Operations on the side chain (NBS_KMnO4):	operations on the side chain (1456, Rivino4). 10, 19		
		42, 49-51			
Aromatic	18	Miscellaneous: 38 (skip toluene),	Miscellaneous: 5a,b		
Substitution		Identifying substituents as activators or	Identifying substituents as activators or deactivators,		
Deastions		deactivators, and ortho-para directors or meta	and ortho-para directors or meta directors: 16, 17		
Reactions		directors: 39, 40, 41, 43, 44, 46, 55, 61, 73, 76	Additions to polysubstituted arenes: 18, 19		
		Additions to polysubstituted arenes: 42e, 46k,	Steric Factors: 20, 21		
		52a,b, 55, 64, 65, 74, 77	Para protection-deprotection: 22, 23		
		Steric Factors: 55, 59, 64, 69, 70 Dara protection depretaction: 54d 62a 71	Synthesis Design: 20-29 Machanisma: 4		
		Synthesis Design: 53 54 63 68 75	Weenamsnis. 4		
		Mechanisms: 49 (skin d)			
Radical Reactions	10	NBS/peroxides Allylic bromination: 34e. 36.	NBS/peroxides Allylic bromination: 16-18		
ixadical ixeactions		39, 42, 44	1		
		Resonance: 24			

Schedule: Which Lecture Videos and Practice-Set Videos Go with Each Test

	Organic Chemistry 1, Jasperse, Book Sections Are for Klein 4 th Edition							
MSUM Videos	Торіс		Book Section					
v iueos	TEST 1 LECTURES		DOOR SECTION					
1	Intro. Why Carbon is Special, Normal bonding, Lewis Structures in Organic		1.1-3					
2	1. Normal Bonding. 2. Formal Charge and Abnormal Bonding. 3. Electronegativity		1.3-9					
3	1. Structural formulas: Full, Condensed, and Skeletal 2. Resonance Structures		2.7-2.13					
4	1. Mechanism/Arrow-pushing. 2. Acid-Base Chemistry. 3. Anion Stability Patterns.		3.1,2,4,6					
5	VSEPR 3D Shape. Drawing 3D; Hybridization; Pi bonds; Isomers,		1.10-14, 2.1-6					
6	Polarity IMF, Boiling Points, Solubility. Catchup. Functional Groups		2.3					
/	Functional Groups. Alkane Nomenclature		4.1-5					
8	Aikane Nomenciature. Newman Projections; Torsional and Steric Strain; Cycloaikanes		4.0-9					
10	CycloneAne Charls, Cis-and-Trans, Subcura isomers		4.9-14					
10	Additional Practice Sets/Videos: Mechanism Practice: Acid-Base Practice: 3D-Drawing Practice: Newman							
	Projection Practice; Cyclohexane Practice							
	Test 1 Practice Tests: V1, V2, V3, V4							
10	IENT 2 LEVIUNED Radical Halogenation: Mechanism: Radicals: Bond Energies: Reaction Energies I ast 12 minutes of Video		10.1-4					
10	Radical Halogenation, Nechanism, Radicals, Bond Energies, Reaction Energies. Last 12 minutes of video.		61-6					
12	Radical Brominations Major product mechanism structure isomers Stability natterns for carbon radicals		6.8-12					
12	cations, and anions.		0.0 12					
13	Chiral vs achiral, Enantiomers, Recognizing/Drawing Mirror Images.		5.1-2					
14	Chiral Carbons; Attachment Priorities; R/S Designation; Drawing Chiral Molecules		5.3-6					
15	Racemic Mixtures, Optical Activity, Meso, Molecules with More than One Chiral Center		5.3-6					
16	Drawing Stereoisomers, Meso Compounds. Alkyl Halides Intro, Classification, and Naming		7.1-3					
17	The Sn2 Substitution Reaction.		7.3-7.8					
18	The Sn1 Substitution Reaction.		7.3-7.8					
19	SNI Reactions in More Depth. Elimination Reactions		7.3-7.8					
20	E1 and E2 Reactions in More Depth; Recognizing Which Reaction Will Occur. Catchup, Practice.		7.5-7.8					
21	Catchup/Practice. First /// minutes of video 21.		1.8-1.12					
	Extra Stereochemistry Practice; Extra Mechanisms + Product Prediction Practice							
	Test 2 Practice Tests: V1, V2, V3, V4							
	TEST 3 LECTURES							
21	Intro to alkenes, Elements of Unsaturation (EU), Last ??? minutes of video 21		14.16, 8.1-3					
22	Hydrogenation + Isomers; Alkene Nomenclature. E/Z; Heats of Hydrogenation		8.2-4					
23	Alkene Synthesis. From RX. Bulky Bases. From Alcohols via Acid-Catalyzed E1. Mechanism Recognition.		7.5-7-9					
24	Addition reactions to Alkenes. Addition of HBr; Acid-Catalyzed HOH Addn.		8.4-5, 10.10					
25	Acid-Catalyzed HOH Addn; Indirect HOH Addn (Hydroboration-Oxidation). Synthesis Design		8.5-8					
26	anti-Mark HBr and HOH addition; Synthesis Design, H2 addn; Br2 addn		8.5-10					
27	Br2 and BrOH additions and mechanisms; epoxidation		8.3-10 8.11.15					
20	Eposidation, Dirydroxylation, Ozonolysis, Steteospecific Alkene Reactions, Synthetic Design.		8.11-15 8.11.15					
29	Additional Practice Sets/Videos: Test 3 Extra Practice 1: Test 3 Extra Mechanisms Practice: Test 3 Alkenel		0.11-15					
	Reactions Practice Test 3 Extra Southesis Practice (6 nages)							
	Test 3 Practice Tests: V1, V2, V3, V4							
	TEST A LECTUDES							
29	LENT 4 LEVI UNED Conjugation Molecular Orbitals Dienes Allulia Cations Additions to Dianas Last 222 minutes of video		161-3					
29 30	Conjugation, protecutal Orbitals, Dienes, Allyne Cations, Additions to Dienes. Last (() minutes of video.		16.1-5					
31	Diels-Alder Reaction: Aromaticity		$16.7 \ 17.1-4$					
32	Aromaticity: Huckel's Rule and Complex Aromatics		17 3-5					
33	Complex Aromaticity, Application, Nomenclature		17.1-5					
34	Electrophilic Aromatic Substitution: Intro, Mech, Kinetic Effects		18.1-6, 15					
35	Reactions in Detail: Halogenation, Nitration, Sulfonation, Alkylation, Acylation		18.1-10, 15					
36	Catchup; Addition to Disubstituted Benzenes; Synthetic Applications		18.1-12, 15					
37	Side Chain Reactions; Retrosynthesis; Synthetic Applications; Practice		10.7, 17.6					
38	Review for Test 4		catchup					
39	More allylic cations/radicals/conjugation and Applications;		catchup					
	Additional Practice Sets/Videos: HBr Addn to Dienes + NBS Allylic Bromination; Conjugation-Allylic-							
	Diels-Alder Practice; Aromatic Substitution Mechanisms (Products Provided); Aromatic Substitution Product							
	rreaction/weenanisms/Synthesis Design Test 4 Protice Tests: V1 V2 V3 V4							
	Final Exam Cumulative		Final Exam					
	a more contrary contrarter to:		i ina LAam					