ORGANIC CHEMISTRY I PROBLEMS, USING WADE 8

- Organic Chemistry (8th Edition) by L. G. Wade, Jr.
- Published by Pearson.
- General Pearson link: <u>https://www.pearson.com/en-us.html</u>
- Amazon link, for Used Textbooks and Solutions Manuals
- <u>https://www.amazon.com/s/ref=nb_sb_ss_i_3_18?url=search-alias%3Dstripbooks&field-keywords=wade+organic+chemistry+8th+edition&sprefix=Wade+Organic+Chemi%2Cstripbooks%2C167&crid=EORKPH7VPDSN
 </u>
- General Google search link for the textbook:
- https://www.google.com/search?g=LG+Wade+Organic+Chemistry+8th+Edition&og=LG+Wade+Organic+Chemistry+8th+Edition&aqs=chrome.69i57j0i512.9744j0j4&sourceid=chrome&ie=UTF-8
- General Google search link for the solutions manual:
- Other Textbooks: <u>https://web.mnstate.edu/jasperse/Chem350/Other-Textbooks.html</u>

<u>Chapter</u> Topic	<u>Wade</u> Chap	<u>Wade 8 Problems</u> In the Chapter	Wade 8 Problems Back of the Chapter	
Intro and Review	1	2a-f, 3a-h, 4, 5a-c, 6(omit boron ones), 7a,b,d,e,g, 8a,e,f,g,h, 9, 10, 11, 15, 17a, 18a,c,e,f, 19.1,2a-f [determine which is the "nucleophile" (electron pair donor) and which is the "electrophile" (electron pair receiver).]	23, 25-29, 31, 34, 35.1, 36, 37, 40-43, (for 42 and 43, you should be able to process H_2SO_4 by memory, the others by structure without needing to look at a list of acidity values), 45 (use nucleophile/electrophile designation, and definitely practice the arrow pushing), 46, 47a,b,d	
Structure and Properties	2	1b (draw), 3, 4, 5, 8, 9, 10 (three do, three don't), 11, 16 (structures are on previous page), 17 (omit a), 18-20, 21 (skip d), 22 [Note: for functional group problems, skip the "cyclic" designation!]	23, 26, 27, 33-35, 38-40, 41 (skip c), 42, 44	
Alkanes	3	1a, 2a, 3, 4a-e, 5, 6a,b, 7a,b, 9a, 11- 13, 15b-d, 16, 17a,b, 18-21, 25-29	33, 34 (omit c and d), 35 (omit b), 37 (omit e,g,h), 38, 39, 40b, 42, 43a,b, 44, 46, 49	
Chemical Reactions.	4	1a-c, 2, 4a, 9a, 11-13, 18, 19a-d, 24, 25, 28-32.	34-39, 41-44, 46a,b,e	
Stereo chemistry	5	2 (label as chiral or achiral. If chiral, also draw the enantiomer.), 3 (star chiral C's, identify each chiral molecule, and be able to draw the enantiomers.), 4, 5 (assign as chiral or achiral), 6 [skip f,g. For all others, give the $(R)/(S)$ designations.], 14, 20a-e, 21 (skip f), 22, 23c	25, 26a,c,d,j-p , 27, 30d, f-h 31a, f-i, 36	
Alkyl Halides: SN2, SN1, E2, E1 Reactions	6	1, 2c,e,f, 3.1,3, 6, 7 (the density of chloroform is 1.50), 8a, 10 $S_N 2$ Reactions: 11-13, 14a,b,d,e, 15(skip b,g), 16, 18 (skip neopentyl bromide. And, substitution is more important than leaving group), 19a,b, 20(skip c,e,f), $S_N 1$ Reactions: 22, 23, 24, 25, 27, 29 (very interesting. Probably not test fodder.) Elimination reactions: 30, 31, 32, 33b-d, 34-39, 40	41, 42a,c-e, 43a,b,e,f, 44**, 45("solvolysis" is substitution by solvent, and is always S_N1), 46, 48-53, 56, 59-61	
Alkenes	7	1 (for b, counting geometric isomers, I count 14 possible alkene isomers and 15 possible cyclic isomers! The answer book only shows a few of the possibilities.), 4, 5a,b,c,f, h, 6a,d,e, 7a,e, 8a,c,e, 10b-d (more stable only. Skip the part about how much difference in energy), 12a,c, 13, 16, 17, 18, 19, 24, 25, 27, 28b,c (c first one), 29a,b (ignore 3 rd product.)	30, 31, 32a,b,d, 33, 34 (for part c: how many rings does it have?), 36a-c, 38 (try to predict the major product. For test purposes I usually wouldn't want the minors), 39a,b,d (the point is to predict the major product), 44, 45	
Alkene Addition Reactions	8	1-4, 6, 8-11, 13-20, 21a-d, 22 (for b, book answer is poor. Should use a hindered base), 23, 24, 29, 30 (mech for ring- opening only), 32b,d, 33, 34b-f, 35 (d,1 means racemic mix of chiral products), 36, 37	46 (good synthesis design practice), 47 (,skip o; good practice for "predict the product" reactions.), 48a, b, c,e,f 49a,b,c,d,e,f,h, 50a-1, 59, 61	
Conjugate d Systems	15	1, 2, 4, 5, 6, 7(skip c), 9, 10-11(NBS=Br ₂ /hv), 12, 14, 15 (skip d), 16 (ignore stereochem), 18	24, 25a-d,g-i, 27, 30, 31, 33a-f	
Aromatics	16	3(skip cyclooctatetraene), 5, 7b-d, 8, 12, 15, 16 (pyrrole picture on top of page, Fig 16.12), 17 (purine picture in section 16-9c), 19, 24a, c,e,g	26a-f, 27a-c,e,f, 28, 32, 34 (hint: N lone pairs are strongly basic when sp^3 or sp^2 but weakly basic when p), 35, 36, 37 ("xylene" means dimethyl benzene), 43	
Aromatic Reactions	17	2, 3(p-xylene is 1,4-dimethylbenzene), 5, 6, 7, 8, 11, 12, 13, 14b(i-iv), 15a,c, 18, 19a, 20a-c	44a,b,d,f,h,j,l, 46a,b,e,f,g, 47b-f,h,i,j,l, 48, 51, 57	

Schedule: Which Lecture Videos and Practice-Set Videos Go with Each Test

	Organic Chemistry 1, Jasperse, Based on Wade Version 8		
<u>MSUM</u> Videos	Торіс	Assignment	
v lucos	TEST 1 LECTURES	Tiblighment	
1	Intro. Why Carbon is Special, Normal bonding, Lewis Structures in Organic	1.1-1.6	
2	1. Normal Bonding. 2. Formal Charge and Abnormal Bonding. 3. Electronegativity	1.7 , 1.4-1.8	
3	1. Structural formulas: Full, Condensed, and Skeletal 2. Resonance Structures	1.9-1.12	
4	1. Mechanism/Arrow-pushing. 2. Acid-Base Chemistry. 3. Anion Stability Patterns.	1.13- 14	
5	VSEPR 3D Shape. Drawing 3D; Hybridization; Pi bonds; Isomers,	2.1-2.8	
6	Polarity IMF, Boiling Points, Solubility. Catchup. Functional Groups	2.9-2.11	
7	Functional Groups. Alkane Nomenclature	2.12-2.14	
8	Alkane Nomenclature. Newman Projections; Torsional and Steric Strain; Cycloalkanes	3.1-3.9	
9	Cyclohexane Chairs, Cis-and-Trans, Structural Isomers	3.9-3.15	
10	Catchup/Practice. First 38 minutes of video 10.		
	Additional Practice Sets/Videos: Mechanism Practice; Acid-Base Practice; 3D-Drawing Practice; Newman		
	Projection Practice; Cyclohexane Practice		
	Test 1 Practice Tests: V1, V2, V3, V4		
	TEST 2 LECTURES		
10	Radical Halogenation; Mechanism; Radicals; Bond Energies; Reaction Energies. Last 12 minutes of Video.	4.1-4.7	
11	Rate Laws, Transition States, Stability-Reactivity Principles	4.7-4.13	
12	Radical Brominations. Major product, mechanism, structure isomers. Stability patterns for carbon radicals,	4.13-4.16	
	cations, and anions.		
13	Chiral vs achiral, Enantiomers, Recognizing/Drawing Mirror Images.	5.1-5.3	
14	Chiral Carbons; Attachment Priorities; R/S Designation; Drawing Chiral Molecules	5.3-5.8	
15	Racemic MIxtures, Optical Activity, Meso, Molecules with More than One Chiral Center	5.11-5.16	
16	Drawing Stereoisomers, Meso Compounds. Alkyl Halides Intro, Classification, and Naming	6.1-6.7	
17	The Sn2 Substitution Reaction.	6.8-6.12	
18	The Sn1 Substitution Reaction.	6.13-6.16	
19	SN1 REactions in More Depth. Elimination Reactions	6.17-6.21	
20	E1 and E2 Reactions in More Depth; Recognizing Which Reaction Will Occur. Catchup, Practice.	Catchup	
21	Catchup/Practice. First ??? minutes of video 21.		
	Additional Practice Sets/Videos: Br2/hv Products/Mechanisms Practice; Introductory Mechanism Practice;		
	Extra Stereochemistry Practice; Extra Mechanisms + Product Prediction Practice		
	Test 2 Practice Tests: V1, V2, V3, V4		
	TEST 3 LECTURES		
21	Intro to alkenes, Elements of Unsaturation (EU), Last ??? minutes of video 21	7.1-7.6	
21	Hydrogenation + Isomers; Alkene Nomenclature. E/Z; Heats of Hydrogenation	7.7-7.10	
23	Alkene Synthesis. From RX. Bulky Bases. From Alcohols via Acid-Catalyzed E1. Mechanism Recognition.	7.10-8.2	
24	Addition reactions to Alkenes. Addition of HBr; Acid-Catalyzed HOH Addn.	8.1-8.5	
25	Acid-Catalyzed HOH Addn; Indirect HOH Addn (Hydroboration-Oxidation). Synthesis Design	8.5-8.7,8-10	
26	anti-Mark HBr and HOH addition; Synthesis Design, H2 addn; Br2 addn	8.8-8.9	
27	Br2 and BrOH additions and mechanisms; epoxidation	8.12-8.16	
28	Epoxidation, Dihydroxylation, Ozonolysis. Stereospecific Alkene Reactions. Synthetic Design.	Catchup	
29	Catchup/Practice. First ??? minutes of video 29.	Curring	
	Additional Practice Sets/Videos: Test 3 Extra Practice 1; Test 3 Extra Mechanisms Practice; Test 3 Alkene		
	Reactions Practice; Test 3 Extra Synthesis Practice (6 pages)		
	Test 3 Practice Tests: V1, V2, V3, V4		
20	TEST 4 LECTURES	1516	
29 20	Conjugation, Molecular Orbitals, Dienes, Allylic Cations, Additions to Dienes. Last ??? minutes of video.	15.1-6	
30	More allylic cations/radicals/conjugation and Applications;	15.7-11	
31	Diels-Alder Reaction; Aromaticity	15.11, 16.1-2	
32 33	Aromaticity; Huckel's Rule and Complex Aromatics	16.1-7	
33	Complex Aromaticity, Application, Nomenclature (Skip "endo rule" section in 15.11A, p. 684; Skip 15.12,13)	16.8-11, 13	
34	Electrophilic Aromatic Substitution: Intro, Mech, Kinetic Effects	17.1,6-8	
35	Reactions in Detail: Halogenation, Nitration, Sulfonation, Alkylation, Acylation	17.2-5,10,11	
36	Catchup; Addition to Disubstituted Benzenes; Synthetic Applications	17.9, practice	
37	Side Chain Reactions; Retrosynthesis; Synthetic Applications; Practice	17.14	
38	Review for Test 4		
39	More allylic cations/radicals/conjugation and Applications;	15.7-11	
	Additional Practice Sets/Videos: HBr Addn to Dienes + NBS Allylic Bromination; Conjugation-Allylic-	1017 11	
	Diels-Alder Practice; Aromatic Substitution Mechanisms (Products Provided); Aromatic Substitution Product		
	Prediction/Mechanisms/Synthesis Design		
	Test 4 Practice Tests: V1, V2, V3, V4		
	Final Exam, Cumulative.	Final Exam	