Acid-Base Chemistry (Section 1-12-14)

	<u>uity/Dasicity Tab</u>			Acid		Base
Entry	<u>Class</u>	<u>Structure</u>	<u>Ka</u>	Strength	<u>Base</u>	<u>Strength</u>
1	Strong Acids	H-Cl, H ₂ SO ₄	10 ²		CI [⊖] , HO−S−O O O O	
2	Hydronium	H ₃ O ⁺ , ROH ⁺ cationic	10 ⁰		H ₂ O, HOR neutral	
3	Carboxylic Acid	R OH	10-5		R [→] O⊖	
4	Ammonium Ion (Charged)	$ \begin{array}{c} R, \bigoplus, H\\ R^{^{N}}R \end{array} $ Charged, but only weakly acidic!	10 ⁻¹²		$ \begin{array}{c} R \\ N \\ R^{-} \\ R^{-} \\ Neutral, but basic! \end{array} $	
5	Water	НОН	10-16		_{но} Ө	
6	Alcohol	ROH	10-17		RO [⊖]	
7	Ketones and Aldehydes	Ομ	10-20		O C C	
8	Amine (N-H)	(iPr) ₂ N-H	10-33		(iPr) ₂ N [⊖] Li [⊕]	
9	Alkane (C-H)	RCH ₃	10-50			

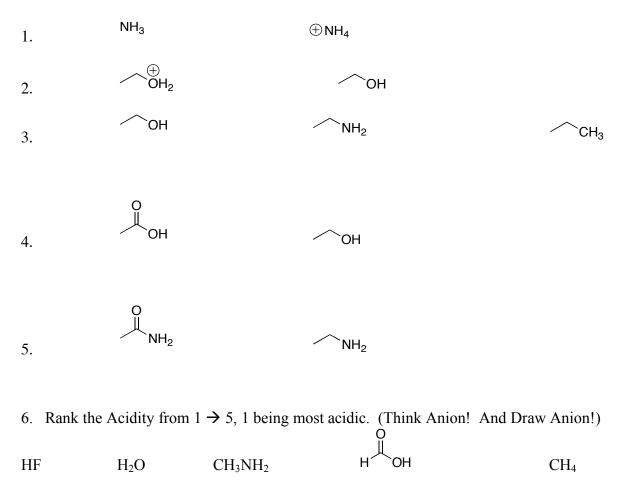
Acidity/Basicity Table

Quick Checklist of Acid/Base Factors

- 1. Charge
- 2. Electronegativity
- 3. Resonance/Conjugation
- 4. Hybridization
- 5. Impact of Electron Donors/Withdrawers
- 6. Amines/Ammoniums
- When a neutral acids are involved, it's best to draw the conjugate anionic bases, and then think from the anion stability side.

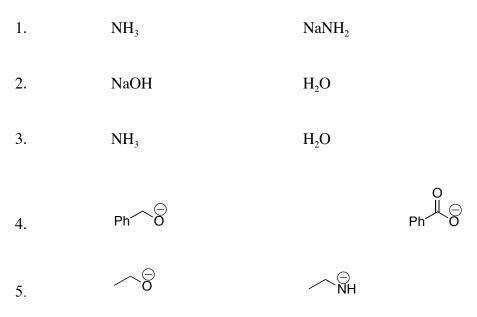
More Detailed Discussion of Acid/Base Patterns/Factors to remember

- 1. Charge: all else equal, cations are more acidic than neutrals, and anions more basic than neutrals.
- 2. Electronegativity:
 - Acidity: H-X (halogen) > H-O > H-N > H-C
 - Basicity: $X \stackrel{\Theta}{\sim} < O \stackrel{\Theta}{\sim} < N \stackrel{\Theta}{\sim} C \stackrel{\Theta}{\sim}$ •
 - Anion Stability: $X \xrightarrow{\Theta} O > N \xrightarrow{\Theta} C \xrightarrow{\Theta}$
 - Why: The more stable the anion Z⁻ that forms, the more acidic the parent H-Z will be. All acids H-Z must give up H⁺. The better off the resulting anion Z⁻ is, the more willing H-Z will be to sacrifice H⁺.
 - The anion stability directly correlates the love for electrons.
 - ٠ Notice three things:
 - ANION STABILITY and the ACIDITY OF A NEUTRAL ACID PRECURSOR ARE DIRECTLY RELATED.
 - ANION STABILITY and the BASICITY OF THE ANION ARE INVERSELY RELATED (more stable anion, less basic anion)
 - ANION BASICITY AND THE ACIDITY OF THE CONJUGATE ACID ARE INVERSELY RELATED (the stronger the acidity of the parent acid, the weaker the basicity of the conjugate anion)
 - KEY: WHEN THINKING ABOUT ACIDITY AND BASICITY, FOCUS ON THE • ANION. THE STABILITY OF THE ANION DETERMINES ACID/BASE **BEHAVIOR.**
- 3. Resonance/Conjugation: Since anion resonance is stabilizing, an acid that gives a resonance-stabilized anion is more acidic. And an anion that forms with resonance will be more stable and less basic.
 - **Oxygen Series Examples:** Acidity: sulfuric acid > carboxylic acid > water or alcohol


- Note: Resonance is often useful as a tiebreaker (for example, molecules in which ٠ both have O-H bonds and both have equal charge, so that neither the charge factor nor the electronegativity factor could predict acidity/basicity)
- NOTE: Resonance can sometimes (not always) trump electronegativity or even ٠ charge.
 - Example of resonance versus charge: A carboxylate anion, with serious 0 resonance stabilization, ends up being so stabilized that it is even less basic than a neutral, uncharged amine! A hydrogen sulfate anion from sulfuric acid is less basic than not only neutral amines but also neutral oxygen (water, etc.)

Chem 350 Jasperse Ch. 1 Acid-Base Chemistry

- 4. Hybridization: For lone-pair basicity, (all else being equal), $sp^3 > sp^2 > sp > p$
- 5. Electron donating/electron withdrawing substituents:
 - Electron withdrawing substituents stabilize anions, so they increase neutral acidity and decrease anion basicity
 - Electron donating substituents will destabilize anions, so they decrease neutral acidity and increase anion basicity.
- 6. Ammonium Cations as Acids and Neutral Amines as Bases
 - Neutral amines are more basic than any neutral oxygen (electronegativity factor), and more basic than some resonance-stabilized oxygen anions.
 - Ammonium cations are more acidic than neutral nitrogen compounds or most neutral oxygen compounds, but less acidic than oxygens that give resonance-stabilized anions. (In this case, resonance factor trumps the charge factor).


Acid/Base Problems

Choose the More Acidic for Each of the Following Pairs: Single Variable Problems

7. For the anions drawn in problem 6, rank them from $1 \rightarrow 5$ in terms of <u>basicity</u>.

Choose the More Basic for Each of the Followin	g Pairs	(Single Va	ariable)

<u>Predicting Acid/Base Equilibria: Any acid base equilibrium favors the side that has the</u> <u>more stable, less reactive base</u>

6. Draw arrow to show whether equilibrium favors products or reactants. (Why?)

a.
$$H_2O + \Theta NH_2$$
 $\Theta OH + NH_3$

$$H_2O + H_O = O + H_O +$$

Generic acid/base reaction, with anionic base and neutral acid:

$$HA + B^{\ominus} \longrightarrow A^{\ominus} + BH$$

Stronger acid \rightarrow weaker conjugate base Weaker acid \rightarrow stronger conjugate base

- Acid-base reactions always favor formation of the weaker acid and weaker base
- The weaker acid and weaker base are always on the same side
- The more stable anion is the weaker base

THEREFORE:

- The equilibrium will always favor the WEAKER, MORE STABLE ANION
- IF YOU CAN IDENTIFY WHICH ANION IS MORE STABLE, YOU CAN PREDICT THE DIRECTION THE REACTION WILL GO.
- This logic can be used to predict whether an anion can successfully deprotonate a neutral species.
- 7. Can H_3C^{\bigcirc} deprotonate H_2O ?