Formal Charge (Section 1-7): When an atom does not have it's normal bonding

• Atoms with formal charge dominate reactivity. Therefore the ability to recognize and identify atoms with formal charge is really important!

• Skills:

- 1. Identify the formal charge for any atom that does not have normal bonding
- 2. Identify the number of bonds and lone pairs associated with any atom whose formal charge is specified
- Note: <u>Designation of formal charge is required</u>. If you don't write the charge sign next to an atom that should have formal charge, you will lose test points!

Formal Charge Equations:

- 1. FC = group # (bonds + unshared e's) (use to calculate FC)
- 2. Group # FC = bonds + unshared electrons (given formal charge, use to find lone pairs)

Practical: (,
C	4 bonds ← → neutral
	3 bonds and zero lone pairs ← cation +1
	3 bonds and one lone pair ←→ anion -1
N	4 bonds ← cation +1
	3 bonds and one lone pair ← → neutral
O	3 bonds and one lone pair ← cation +1
	2 bonds and 2 lone pairs ← → neutral
	1 bond and three lone pairs \leftarrow anion -1

FORMAL CHARGE

# of bonds	С	N	O	F
4	0	+1		
3	-1 or	0	+1	
2	+1	-1	0	
1			-1	0

Formal Charge Practice (Section 1-7)

1. Assign any **formal charges** to atoms that need them:

2. Fill in lone pairs on any atoms that need them (whether atoms with formal charge or neutral atoms):

Notice: With the exception of carbocations, all other C/N/O atoms end up with a combined total of four when you sum up their bonds and lone-pairs. So apart from carbocations, if you know the number of bonds, you can fill in the correct number of lone pairs without even thinking much!