Summary of Normal, Ideal Bonding (No Formal Charge)			
	Valence	Valence	Lone
	Electrons	Bonds	Pairs
C	4	4	0
N	5	3	1
-o:	6	2	2
H—	1	1	0
:CI— :Br—	7	1	3
:i— :F—			

Normal Bonds (Sections 1.2-1.5)

Summary of Normal, Ideal Bonding (No Formal Charge)

Rules for Drawing Lewis structures for organic molecules: (Sections 1.4-5)

- 1. Try to provide normal bonding for C, N, O atoms <u>if possible</u>. (Works > 95% of time)
- 2. Double or triple bonds will often be involved.
 - Double or triple bonds are often required to achieve normal bonding.
- 3. In any formula that has a charge, there will always be an atom with that formal charge.
- 4. In any formula that includes a metal, assume ionic bonding.
 - Assume positive charge for the metal,
 - Assume negative charge for the organic portion.
- 5. Do not draw bonds between nonmetals and metals, as if they were covalently bound.
- 6. <u>Be sure to specify the formal charge on any atom that has formal charge</u>.
- 7. Always be aware of how many lone pairs are on any atom
 - Note: We will often omit lone pairs. But you must know when they are there!

Lewis Structure Practice (Section 1-4,5)

- 1. Draw Lewis structures for the following formulas: (Include lone pairs or formal charges if necessary)
 - a. CH₃CH₂OH b. CH₃CH₂OH
 - c. CO₂

d. HCN

e. CH₃CHO

f. NaOCH₃