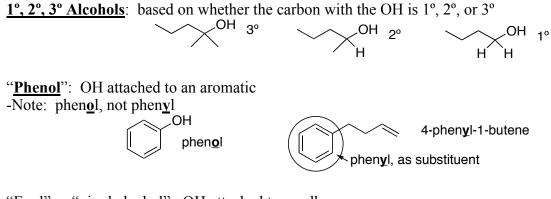
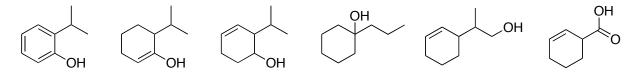

Summary of Alcohol Syntheses, Ch. 10 (and Review of Old Ones).

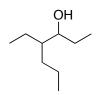

1R-OHNa
R = ONa• Potassium (K) analogous.
• Key way to convert alcohol to
alkoxide, reactive as S_N2 nucleophile
and E2 base.2R-OH
$$\frac{1.}{2.}$$
 Na
 $\frac{1.}{2.}$ R⁺XR-O-R⁺• Alkoxide formation-S_N2 route to ether
• The electrophile R⁻X must be S_N2
reactive, preferably 1° with a good
leaving group3R-BrMgRMgBr-Li is analogous for making RLi,
which also act analogously.
• MgBr is spectator: R ^O is key.4 $\frac{O}{H+H}$ $\frac{1.}{RMgBr}$ OH
 $\frac{P+H}{2.}$ HgO⁺ $\frac{1.}{P+H}$ 5 $\frac{O}{R+H}$ $\frac{1.}{RMgBr}$ OH
 $\frac{P+H}{2.}$ HgO⁺R^MgBr $\frac{1.}{RCHO}$ 5 $\frac{O}{R+H}$ $\frac{1.}{RMgBr}$ OH
 $\frac{P+R}{2.}$ alcoholR^MgBr $\frac{1.}{RCHO}$ $\frac{R}{R^+}$ 6 $\frac{O}{R+H}$ $\frac{1.}{RMgBr}$ OH
 $\frac{P+R^+}{R^+}$ R^MgBr $\frac{1.}{R(R)CO}$
 $\frac{2.}{H_3O^+}$ $\frac{R}{R^+}$ All three
Mech7 $\frac{O}{R+GR}$ $\frac{1.}{RMgBr}$ OH
 $\frac{1.}{R+R^+}$
 $\frac{2.}{H_3O^+}$ R^MgBr $\frac{1.}{RCO_2R}$ $\frac{R^+}{R^+}$
 $\frac{R^+}{OH}$
 $\frac{R^+}{R^+OH}$ At least 2
R groups
must be
the same7 $\frac{O}{R+GR}$ $\frac{1.}{RMgBr}$ OH
 $\frac{R+R^+}{R^+}$
 $\frac{R^+}{R^+OH}$ R^MgBr $\frac{1.}{RCO_2R}$ $\frac{R^+}{R^+}$
 $\frac{R^+}{OH}$
 $\frac{R^+}{R^+OH}$

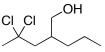
Chem 350 Jasperse Ch. 10 Notes

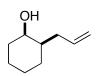
10.1,2 Intro, Classification


"<u>Alcohol</u>": OH attached to a saturated, sp³, "alkyl" carbon

"Enol" or "vinyl alcohol": OH attached to an alkene

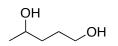

OH enol or vinyl alcohol


Problem: Classify each of the following either as a phenol, as a carboxylic acid, or as a 1°, 2°, 3°, or vinyl alcohol:


10.3 Nomenclature

- A. IUPAC, when alcohol is priority functional group and is part of the core name: x-alkanol
- Choose longest carbon chain that has the OH attached
- Remember to number!
- The oxygen itself does <u>not</u> count as a number

B. Cycloalkanols: The OH-carbon is automatically Number 1



C. <u>x-Alken-z-ol</u>. When an alkene is in the main carbon chain, you need two number descriptors, one for the alkene, the second for the alcohol.

- The OH still dictates the numbering
- The OH number gets moved right before the "ol"
- The alkene number goes in front, in front of the "alken" portion
- Note: you only put the OH number right in front of the "ol" when you have an alkenol (or alkynol)

OH

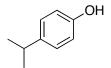
D. Diols: x,y-alkanediol

E. Functional Group Priority: $CO_2H > C=O > OH > amine > alkene > halide$

OH

- When you have more than one functional group, the higher priority dictates the numbering
- The higher priority is used in the "core name"
- The lower priority group may be forced to be named as a substituent
- F. OH as a Substituent: "Hydroxy"

G. Common Names: Alkyl alcohol


CH₃OH

ОН

OH

- H. Substituted Phenols
 - IUPAC: use numbers, with OH carbon #1
 - Common:
 - o Ortho: 2-position, adjacent
 - Meta: 3-position, two carbons away
 - Para: 4 position
 - Skill: be able to use or recognize either system

IUPAC:

Common:

10.4 Physical Properties: Dominated by H-Bonding

BP: Match the boiling point for the following structures: 35°, 137°, 187°

OH

Θ

Water solubility: water solubility decreases as hydrophobic R gets longer

- In general,
 - \circ R \leq 4 carbons, ROH substantially water soluble
 - \circ R \geq 5 carbons, ROH minimal water solubility

10.5 Commercially Important Alcohols

• Toxic: All alcohols are "toxic" if swallowed in sufficient quantities

CH ₃ OH	∕∩он	OH	
• Cheap	• 200 mL (7 oz) \rightarrow death	Rubbing alcohol	
• Solvent	 Least toxic alcohol 	• 100 mL \rightarrow death	
• Fuel	 Alcoholic beverages 	• Kills germs on skin, but	
• 100 mL \rightarrow death	Fermentation	not absorbed	
• 15 mL \rightarrow blindness	• Solvent		

10.6 Acidity of Alcohols and Phenols

A. Alcohols are weak acids \rightarrow can be ionized by stronger bases

$$ROH + B^{\bigcirc} \implies RO^{\bigcirc} + BH$$

goes to the right (alkoxide) only if RO
$$\bigcirc$$
 is more stable than B

• ex.
$$\bigcirc$$
 NH₂, \bigcirc CH₃

• ex. If a less stable oxygen anion can convert to a more stable oxygen anion

 \frown

B. Acidity Table

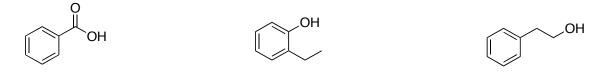
Class	Structure	<u>Ka</u>	<u>Acid</u> Strength	<u>Anion</u>	<u>Base</u> Strength
Strong Acids	H-Cl	10 ²		cl⊖	
Carboxylic Acid	R OH	10-5		R [→] O⊖	
Phenol	ОН	10 ⁻¹⁰			
Water	H ₂ O	10 ⁻¹⁶		$_{\rm HO} \ominus$	
Alcohol	ROH	10-18		RO ^(C)	
Amine (N-H)	RNH ₂	10 ⁻³³		RNH⊖	
Alkane (C-H)	RCH ₃	10 ⁻⁵⁰		$\operatorname{RCH}_2 \ominus$	

Notes/skills:

- 1. Be able to rank acidity.
- 2. Memorize/understand neutral OH acidity ranking: $RCO_2H > H_2O > ROH$
 - Reason: **resonance** stabilization of the **anion**
- 3. Predict deprotonation (acid/base) reactions
 - Any weak acid <u>will be</u> deprotonated by a <u>stronger base (lower</u> on table)
 - Any weak acid will not be deprotonated by a weaker base (higher on table)
- 4. Predict ether/water extraction problems
 - If an organic chemical is neutral and stays neutral, it will stay in ether layer
 - If an organic chemical is ionized (by an acid-base reaction), it will extract into the aqueous layer

Problems

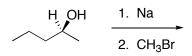
8. Draw arrow to show whether equilibrium favors products or reactants. (Why?)


$$\Theta_{OH + H} \longrightarrow \Theta_{OH} \qquad H_2O + H_2O = H_2O + H_2O = H_2O =$$

9. Which of the following will deprotonate methanol?

H_2O	CH ₃ CO ₂ Na	PhONa	NaOH	NaNH ₂	CH ₃ MgBr
--------	------------------------------------	-------	------	-------------------	----------------------

An acid (left side) will only be deprotonated by an anion/base that is **lower** on the right side


10. When the following are dissolved in ether and then treated with NaOH/water, which would extract out of the ether layer into the water layer?

10.6B Formation of Sodium, Potassium Alkoxides; 2-Step Conversion of Alcohols into Ethers via the Alkoxides

1	$ \begin{array}{ccc} R-OH & \xrightarrow{Na} & R-ONa \\ & & & \\ R-OH & \xrightarrow{K} & R-OK \end{array} \end{array} $	 Potassium (K) analogous. Key way to convert alcohol to alkoxide, reactive as S_N2 nucleophile and E2 base.
2	$R-OH \xrightarrow{1. \text{ Na}} R-O-R'$ 2. R'-X	 Alkoxide formation-S_N2 route to ether The electrophile R'-X must be S_N2 reactive, preferably 1° with a good leaving group

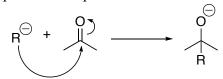
Reaction 1: Key source of nucleophilic/basic alkoxides

1. BH ₃ -THF	3. Na	
2. NaOH, H ₂ O ₂	4. CH ₃ CH ₂ Br	

10.7 Synthesis of Alcohols: Review: See p. 2, from Alkyl Halides (S_N2) and Alkenes

10.8 Organometallics: RM (M = Metal) = R \bigcirc M \oplus

 $\begin{array}{ccc} \mathsf{R}-\mathsf{Br} & & \overset{\mathsf{Mg}}{\longrightarrow} & \mathsf{R}\mathsf{Mg}\mathsf{Br} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \mathsf{B}-\mathsf{Br} & & \overset{\mathsf{2Li}}{\longrightarrow} & \mathsf{Bl}\,\,i+\mathsf{Li}\mathsf{Br} \end{array}$

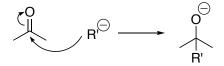

- 1. We will focus on the magnesium reagents RMgBr
- 2. RMgBr = "Grignard Reagents" (Victor Grignard)
- 3. Key: This is the way to make R^{\bigcirc} , strong nucleophiles/bases
- 4. RMgBr are formed via redox reaction.
 - Mg gives up two electrons, is oxidized
 - Bromine is reduced to bromide anion
 - Carbon is reduced to carbanion

$$\overset{\bigcirc}{\mathsf{R}} - \mathsf{Br}' + \overset{\bullet}{\mathsf{Mg}} \longrightarrow \mathsf{R}^{\bullet} + \overset{\bigcirc}{\mathsf{Br}} + \overset{\bigcirc}{\mathsf{Mg}^{\bullet}} \longrightarrow \overset{\bigcirc}{\mathsf{R}^{\bullet}} + \overset{\bigcirc}{\mathsf{Br}} + \overset{2+}{\mathsf{Mg}^{\bullet}}$$
 Not for Test

- 5. The formation of Grignard Reagents is completely general for all R-Halides:
 - 3°, 2°, and 1° alkyl halides all work well
 - Aryl and Vinyl halides as well as alkyl halides work well
 - RCl, RBr, and RI all work well
 - For class, we will normally use bromides, due to synthetic accessibility

6. <u>View as carbanions: $RMgBr = R \bigcirc$ Super Strong Bases and Nucleophiles</u>

- The counterion metal is a spectator
- Stability-reactivity principle: very unstable \rightarrow very reactive
- This great reactivity is very useful (as nucleophile)
- This great reactivity (as base) has implication for proper technical use (see following)
- 7. Solvent and handling: Grignard reactants RMgBr must be made, stored, and handled in special solvents under special conditions:
 - No water allowed
 - $R^{\bigcirc} + H_2O \rightarrow R-H + HO^{\bigcirc}$ Destroys carbanion
 - No alcohol or amines or acids allowed either, or carbanion will just deprotonate them too
 - If any chemicals with carbonyls are present, they too will react with the carbanion by nucleophile/electrophile reaction


- Grignards and other organometallics are made in either alkane or ether solvents.
 - These don't have any acidic hydrogens that protonate carbanions.
 - These don't have any carbonyls that react with carbanions

8. Two perspectives for dealing with organometallics in general and RMgBr in particular

- Mechanistic Thinking: $R \ominus$
- Predict-the-product thinking: R-MgBr: easier to see source and substitution product.

 $R-Br \xrightarrow{Mg} R-MgBr \xrightarrow{Electrophile} R-Electrophile$

10.9 Addition of RMgBr to Carbonyl Compounds: Alcohols are Produced

Carbonyl is strongly electrophile

1. Breakable π bond 2. Carbonyl polarity

-much stronger even than a 1° alkyl iodide!

- Exothermic Addition of Carbon or Hydrogen Anions:
 - σ bond (made) stronger than π bond (broken)
 oxygen anion more stable than carbanion

 $\overset{\mathsf{O}^{\delta^{-}}}{\overset{\overset{\overset{}}{\overset{}}}{\overset{}}} \longleftrightarrow \overset{\mathsf{O}^{\bigcirc}}{\overset{\overset{}}{\overset{}}}$

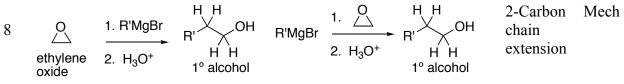
Additions of Grignard Reagents to Carbonyl Compounds From Carbonyl's Perspective From Grignard's Perspective $\begin{array}{c} 1. \ H_2CO \\ R'MgBr \\ 2. \ H_3O^+ \end{array}$ $H \stackrel{O}{\longrightarrow} H \xrightarrow{1. R'MgBr} H \xrightarrow{OH} H \xrightarrow{H} H$ 1 carbon Mech сон R'× 4 chain 1º alcohol extension 2° alcohol formaldehyde R'MgBr $\xrightarrow{1. \text{ RCHO}}_{2. \text{ H}_3\text{O}^+}$ $\xrightarrow{\text{R}}_{2^\circ \text{ alcohol}}^{\text{R}}$ $\begin{array}{c} \overbrace{H} \\ R \\ aldehyde \end{array} \begin{array}{c} 1. R'MgBr \\ \hline 2. H_3O^+ \\ \end{array} \begin{array}{c} OH \\ R \\ \hline R \\ H \end{array}$ Mech 5 2º alcohol $R \stackrel{\checkmark}{\xrightarrow{}} R" \xrightarrow{1. R'MgBr} OH$ ketone $R \stackrel{\sim}{\xrightarrow{}} R" \xrightarrow{2. H_3O^+} R \stackrel{OH}{\xrightarrow{}} R''$ R'MgBr $\xrightarrow{1. R(R'')CO}_{2. H_3O^+}$ All three Mech 6 R groups can be 3° alcohol different. 3º alcohol At least 2 Mech R'MgBr $\xrightarrow{1. \text{RCO}_2\text{R}}$ $\xrightarrow{\text{R'}}$ $\xrightarrow{\text{R'}}$ $\xrightarrow{\text{R'}}$ 7 R groups must be ester the same 3° alcohol (or carbonyl chloride)

Pattern:

- 1. After reaction, the original carbonyl carbon will have one and only one C-O single bond
- 2. For formaldehyde, aldehydes, and ketones, one R group adds (reactions 4-6)
- 3. For esters or carbonyl chlorides ("acid chlorides"), two R groups add
- Replace not only the carbonyl p-bond, but also the "extra" C-O or C-Cl single bond 4. Product output:
 - Formaldehyde (2 H's) \rightarrow 1° alcohol
 - Aldehyde (1 H) \rightarrow 2° alcohol
 - Ketone (0 H) \rightarrow 3° alcohol. No need for all 3 attachments to be the same.
 - Ester (0 H) \rightarrow 3° alcohol. At least two common attachments at end.

Predicting Grignard Reaction Products

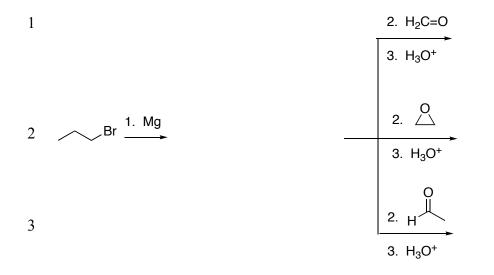
- 1. From carbonyl perspective:
 - The carbanion R' adds to the carbonyl carbon
 - The carbonyl =O gets replaced by -OH
 - For formaldehyde, aldehydes, and ketones: the two attachments on the original carbonyl carbon remain attached as spectators
 - For esters or acid chlorides: the one non-heteroatom attachment on the original carbonyl carbon remain attached as spectators.
 - The "extra" heteroatom gets replaced by a second carbanion R'
- 2. From Grignard perspective:
 - Where R-MgBr begins, R-C-OH ends.
 - In other words, the MgBr gets replaced by the carbonyl carbon


Note: Be sure that in the product, no carbon has more than one C-O bond

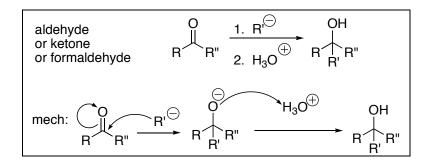
Draw products from the following reactions.

$$1 \qquad \underbrace{1}_{Q} \qquad \underbrace{1}_$$

1°, 2° or 3°?


10.9E Grignard Reaction with Ethylene Oxide (Simplest Epoxide)

Notes


- 1. Results in a 1° Alcohol
- 2. Predicting product: Two carbons end up in between the carbanion R' and the OH
- 3. Ethylene oxide and formaldehyde are complementary Grignard acceptors leading to 1° alcohols
 - Ethylene oxide extends the carbon chain by two (relative to the original RMgBr)
 - Formaldehyde extends the carbon chain by one (relative to the original RMgBr)
- 4. 2-Carbon ethylene oxide and 2-carbon ethanal give different products
 - \circ Ethylene oxide \rightarrow the OH is 1° and the OH is two carbons removed from the carbanion R
 - Ethanal → the OH is 2° and the OH and carbanion R are both connected to the same carbon

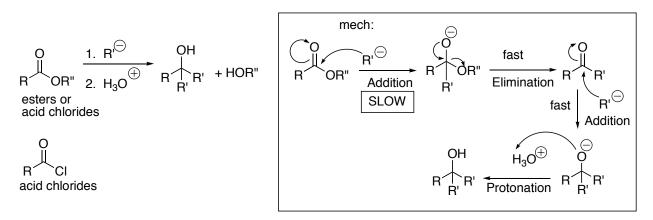
Draw products from the following reactions.

Reaction Mechanisms for Grignard Reactions

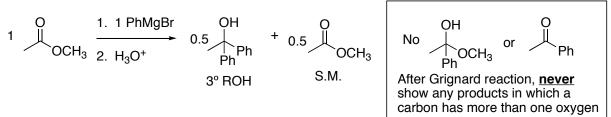
Formaldehyde, Aldehyde, or Ketone as Carbonyl Compound (Reactions 4, 5, and 6)

- 1. Two simple steps:
 - a. <u>Addition</u>

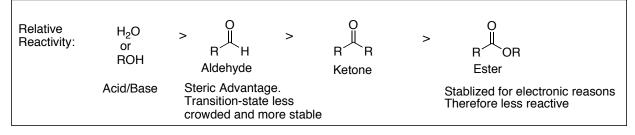
b. <u>Protonation</u>


- 2. Timing:
 - a. The carbanion is added first, at one step in time, under strongly anionic conditions
 - b. Later acid is added, in a second laboratory step. This provides a cationic environment
- 3. RMgBr = R-MgBr = R \bigcirc carbanion
 - a. The ⁽⁺⁾ MgBr stuff is spectator, doesn't need to be drawn in
 - b. Ignore in mechanisms
 - c. In reality, it actually does play a nontrivial role, but we'll save that for grad school!

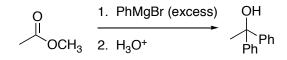
Draw mechanisms for the following reactions:


$$1 \qquad \overset{O}{\underset{1}{\overset{\parallel}{\overset{\parallel}{\overset{}}}}} \qquad \underbrace{1. \ PhMgBr}{2. \ H_3O^+}$$

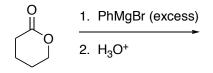
$$2 \qquad 0 \qquad 1. \qquad MgBr \\ \qquad \swarrow H \qquad 2. \qquad H_3O^+$$


Esters or Acid Chlorides: More Complex, Needs to Explain Two Additions and More Bond Breakings

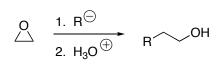
- 1. Four Step Mechanism:
 - a. Addition
 - b. Elimination
 - c. Addition
 - d. **Protonation**
- 2. Timing:
 - a. The carbanion is added first, at one point in time, under strongly anionic conditions
 The first three steps all occur under these anionic conditions
 - b. Acid is only added much later, in a second laboratory step. This gives a cationic environment.
 - c. Why don't you just protonate after the first step?
 - There is no proton source available, and the elimination proceeds instead!
- 3. What if I add only one RMgBr?

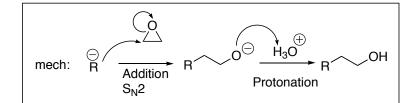


Why? Kinetics and Reactivity. MEMORIZE.


- Large differences in reactivity, with ketone > ester
- Elimination step 2 is also very fast
- Thus, under the anionic conditions, the addition is the slow step
 - After it does happen, elimination and another addition happens bang-bang.

Draw Mechanism:




<u>Cyclic Ester:</u> The O-Carbonyl single bond breaks, but the other C-O single bond does <u>not</u> break -the result is formation of a dialcohol

Draw product and mechanism for the following:

Ethylene Oxide Mechanism

Draw product and mechanism for the following:

$$MgBr \xrightarrow{1.} 0 \\ 2. H_3O^{\oplus}$$

More Grignard Practice. Including polyfunctional Molecules: (Know relative reactivity)

$$1 \qquad H_{3}CO \qquad 0 \qquad 1. PhMgBr (excess)$$

$$2 \qquad H_{3}CO \qquad 0 \qquad 1. PhMgBr (1.0 equivalent)$$

$$2 \qquad H_{3}CO \qquad 0 \qquad 1. PhMgBr (1.0 equivalent)$$

$$3 \qquad H_{3}CO \qquad 0 \qquad 1. PhMgBr (1.0 equivalent)$$

$$3 \qquad H_{3}CO \qquad 0 \qquad H \qquad 1. PhMgBr (1.0 equivalent)$$

$$4 \qquad Ph \qquad H \qquad 1. \qquad MgBr$$

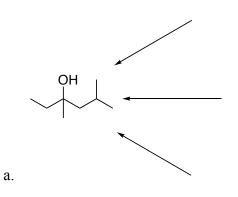
$$2 \qquad H_{3}O^{+}$$

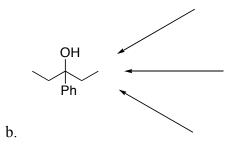
$$5 \qquad BrMg \qquad 1. \qquad 1. \qquad H_{3}O^{+}$$

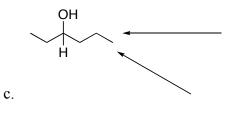
$$6 \qquad - Br \qquad 1. \qquad H_{3}O^{+}$$

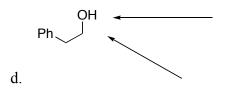
$$6 \qquad - Br \qquad 1. \qquad H_{3}O^{+}$$

$$6 \qquad - Br \qquad 1. \qquad H_{3}O^{+}$$

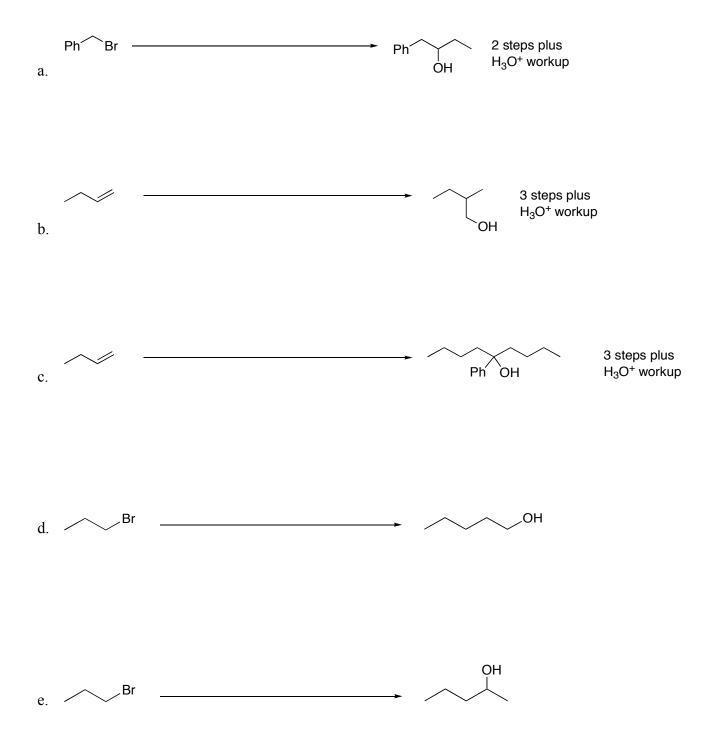

$$7 \qquad 0 \qquad H \qquad 1. \qquad H_{3}O^{+}$$

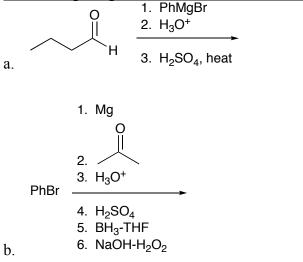

$$8 \qquad BrMg \qquad 1. \qquad Ag^{+}$$


$$8 \qquad BrMg \qquad 1. \qquad Ag^{+}$$


Grignards in Synthesis: Provide Precursors.

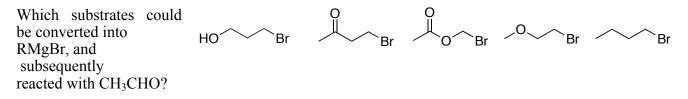
- Think backwards from Targets to Reactants. •
- Identify possible Grignards and Grignard acceptors
- Pattern:
 - 3° alcohol, all three attachments different ← Ketone Precursor 3° alcohol, two (or more) of the attachments identical ← Ester •
 - •
 - •
 - 2° alcohol ← Aldehyde 1° alcohol ← Formaldehyde or ethylene oxide •





<u>Provide Reagents for the Following Transformations.</u> You may use whatever reagents, including ketones or aldehydes or Grignards or esters, that you need.

- Key: Try to identify key C-C connection in the product that wasn't present to start with
- Try to identify the where the reactant carbons are in the final product
- Numbering your carbon chains is very helpful.
- Usually best to work backwards from the product

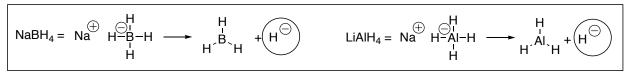


10.10 Restrictions on Grignard Reactions

- RMgBr = R \bigcirc carbanion, highly unstable, highly reactive.
- Unstable in the presence of:
 - 1. OH's (get proton transfer reaction)
 - 2. Carbonyls (get Grignard-type nucleophilic addition)
- 1. Solvent limitations. RMgBr cannot be formed and used in the presence of
 - H2O
 - ROH
 - Any solvent with a C=O

Which Solvents (if any) o ↓ ∧ Would be OK for ЮΗ Handling RMgBr?,

2. Substrate limitations. Any organohalide that also contains an OH or C=O bond can't be converted into a useful RMgBr, because it will self-destruct.


- 3. Atmosphere/Glassware/Storage limitations. Make, store, and use in:
 - water-free dried glassware
 - moisture-free atmosphere. (Dried air, or else under nitrogen or argon atmosphere)
 - When stored for extended periods, must have very good seals so that no air can leak in.

10.11 Alcohols by Reduction of Carbonyls: $H ^{\bigcirc}$ Addition

9
$$\bigcap_{R \to H}^{\circ} \frac{NaBH_{4}}{CH_{3}OH}$$
 or $\frac{1. LiAH_{4}}{2. H_{3}O^{+}}$ $\bigcap_{R \to H}^{\circ} \frac{H}{H}$ $H_{1^{\circ} alcohol}$
10 $\bigcap_{R \to R^{\circ}}^{\circ} \frac{NaBH_{4}}{CH_{3}OH}$ or $\frac{1. LiAH_{4}}{2. H_{3}O^{+}}$ $\bigcap_{R^{\circ}}^{\circ} \frac{H}{R}$ H_{R}°
 $R^{\circ} R^{\circ} \frac{1. LiAH_{4}}{CH_{3}OH}$ OH $R^{\circ} \frac{H}{R}$ H_{R}° $R^{\circ} R^{\circ}$ $R^{\circ} H_{R}^{\circ}$ $R^{\circ} R^{\circ}$ $R^{\circ} R^{\circ}$ $R^{\circ} R^{\circ}$ $R^{\circ} R^{\circ}$ $R^{\circ} R^{\circ}$ $R^{\circ} R^{\circ} R^{\circ}$ $R^{\circ} R^{\circ} R^{\circ}$ $R^{\circ} R^{\circ} R^{$

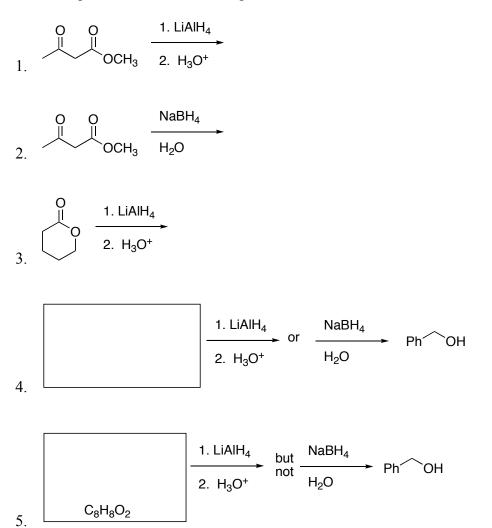
Notes:

- Mechanisms are exactly like with Grignard reactions
- LiAlH₄ and NaBH₄ function as hydride anions H \bigcirc
- For mechanisms, just draw H^{\bigcirc} rather than trying to involve the Li and Al and Na and B...

- Boron is one row higher than aluminum, and in keeping with normal periodic patterns is more electronegative
 - $\circ\,$ Because boron is more electronegative, the $BH_4\,^{\bigcirc}\,$ anion is more stable, and less reactive.
 - The boron holds the H^{\bigcirc} more tightly.
 - Aluminum being less electronegative doesn't attract and hold the H $^{\bigcirc}$ as well, and thus is considerably more reactive.

Reactivity

	Aldehydes	Ketones	Esters
LiAlH ₄	Yes	Yes	Yes
NaBH ₄	Yes	Yes	No


LiAlH₄ is much stronger, NaBH₄ much weaker

- 1. LiAlH₄ is strong enough to react with esters, NaBH₄ isn't
- 2. <u>Selective reduction</u>: if both an ester and an aldehyde/ketone are present:
 - LiAlH₄ reduces both
 - NaBH₄ selectively reduces the aldehyde/ketone but leaves the ester untouched
- 3. LiAlH₄ is strong enough to react with and be destroyed by water or alcohol; NaBH₄ isn't

$$LiAlH_4 + H_2O \rightarrow H_2(gas) + LiOH + AlH_3 + heat$$

- a. As a result, LiAlH₄ is harder to use and store
- b. Acid has to be added in a subsequent step with the LiAlH₄; (thus, 2-step recipe)
- c. NaBH₄ can be run in alcohol solvent which serves as a proton source for protonating alkoxide
- d. Solvent restrictions, glassware must be dry, wet air must be excluded, etc.
- e. Because NaBH₄ is stable to water, it's easier to handle in air, easier to store, much easier to work with
- f. Default: for a simple aldehyde or ketone reduction, normally use NaBH₄ because it's so much easier
- 4. LiAlH₄ is strong enough to react with esters, $NaBH_4$ isn't

Draw the products for the following reactions.

Draw the mechanism for the following reaction.

6.

$$Ph \xrightarrow{H} H \xrightarrow{NaBH_4} OH$$

 $GH_3OH \xrightarrow{OH} Ph \xrightarrow{OH} Ph$
 $1. \text{ LiAlH}_4$
 $2. \text{ H}_3O$