

Conversions of Alcohols into Other Reactive Species in Multi-Step Syntheses

- 1. oxidation can convert an alcohol into a carbonyl = Grignard acceptor (electrophile)
- 2. PBr_3/Mg or HBr/Mg can convert an alcohol into RMgBr = Grignard donor (nucleophile)
- **3.** PBr₃ or HBr can convert an alcohol into RBr, capable of normal substitution and elimination reactions.

<u>Retrosynthesis Problems (In which you decide what to start from):</u> Design syntheses for the following.

Allowed starting materials include:				
Bromobenzene	cyclopentanol	any acyclic alcohol or alkene with ≤ 4 carbons		
any esters	ethylene oxide	formaldehyde (CH ₂ O)		
any "inorganic" agents (things that won't contribute carbons to your skeleton)				

Tips:

- 1. Focus on the functionalized carbon(s)
- 2. Try to figure out which groups of the skeleton began together, and where new C-C bonds will have been formed
- 3. When "breaking" it up into sub-chunks, try to make the pieces as large as possible (4 carbon max, in this case, for acyclic pieces)
- 4. Remember which direction is the "true" laboratory direction.
- 5. Be careful that you aren't adding or substracting carbons by mistake

Normal Synthesis Design: In which you are given at least one of the starting Chemicals. Provide Reagents. You may use whatever reagents, including ketones or aldehydes or Grignards or esters, that you need. Tips:

- Identify where the reactant carbons are in the product
- Is the original carbon still oxygenated? \rightarrow it will probably function as a Grignard acceptor
- Is the original carbon not still oxygenated? \rightarrow it should probably function as Grignard donor
- Working backwards helps.

Retrosynthesis Problems: Design syntheses for the following.

Allowed starting materials include:				
	Bromobenzene	cyclopentanol	any acyclic alcohol or alkene with ≤ 4 carbons	
	any esters	ethylene oxide	formaldehyde (CH ₂ O)	
	any "inorganic"	agents (things that won't	contribute carbons to your skeleton)	

Tips:

- 1. Focus on the functionalized carbon(s)
- 2. Try to figure out which groups of the skeleton began together, and where new C-C bonds will have been formed
- 3. When "breaking" it up into sub-chunks, try to make the pieces as large as possible (4 carbon max, in this case, for acyclic pieces)
- 4. Remember which direction is the "true" laboratory direction.
- 5. Be careful that you aren't adding or substracting carbons by mistake

