Ch 2 Structure and Properties of Organics

2.1-6 3-D Structure, Hybridization, and Orbitals

<u>2.4,6 "VSEPR" and Molecular Shape:</u> <u>Valence Shell Electron Pair Repulsion</u>

Concept: electron groups repel, determine structure

4 electron groups: tetrahedral, 109° angle

3 electron groups: trigonal planar, 120° angle

2 electron groups: linear, 180° angle

2 Types of "Electron Groups"

- 1. "B" = bonds to other atoms.
 - Whether it's a single, double, or triple bond, it still counts as one "electron group" or one "bond group"
- 2. "L" = Lone pairs

	Electron	Bond		Remaining
B+L	Geometry	Angle	Hybridization	P-orbitals
4	Tetrahedral	≈109°	sp ³	0
3	Trigonal	≈120°	sp^2	1
	Planar			
2	Linear	≈180°	sp	2

EXAMPLES

Ӊ Ӊ Ҥ [⊂] ҇Ҥ АВ₄	Ӊ Ҥ ^{҇҇҇҆} ҇Ҥ AB ₃ L	H ^O H AB ₂ L ₂	$\begin{array}{c} H & H \\ C = C \\ H & H \\ AB_3 \end{array}$	H−C≡N—:	AL_{2} AB_{2} $H = C + C + H$ $H = H + H$ $AB_{3} + AB_{3}$
---------------------------------	--	--	--	---------	---

2.5 DRAWING 3-D

Guidelines for Drawing Models:

A. In-Plane/Out-of-Plane

- Designate an atom in front of plane with a wedge
- Designate an atom **behind** plane with a hash
- Designate an atom in the plane plane with a straight line
- B. 3-D Perspective
 - 1. Keep as many atoms as possible in a single plane (plane of the paper) by zig-zagging. Connections within the paper are drawn with straight lines.
 - 2. Use wedges to indicate atoms that are in front of the plane.
 - 3. Use hashes to indicate atoms behind the plane.

C. For any tetrahedral atom, only 2 attachments can be in the plane, 1 must be in front, and 1 behind.

-if the two in the plane are "down", the hash/wedge should be up

-if the two in plane are "up", the hash/wedge should be down.

-the hash/wedge should never point in same direction as the in-plane lines, or else the atom doesn't looks tetrahedral

-for polyatomic molecules, it is strongly preferable to NOT have either of the in-plane atoms pointing straight up. Straight-up in-plane atoms do not lend themselves to extended 3-D structures.

Good! Look tetrahedral

Bad! These don't look tetrahedral!

Draw: C_2H_6

 $C_{4}H_{10}$

CH₃COCH₃

CH₃CH=CHCl

Hybrid Orbitals; π bonding (Chapter 2.1-4) $1s + 3p \rightarrow 4 sp^3$ hybrids

 $1s + 2p (+ 1 \text{ unhybridized } p) \rightarrow 3 \text{ sp}^2 \text{ hybrids } (+ 1 \text{ unhybridized } p) 120^{\circ}$ 1s + 1p(+2) unhybridized $p's \rightarrow 2$ sp hybrids (+2 unhybridized p's)) 180°

- Why does hybridization occur?
 Hybrid orbitals are big and point in one direction. Their <u>directionality</u> leads to <u>better overlap</u> which leads to strong bonds.
- Hybrid orbitals leads to nice VSEPR angles

- <u>If hybridization is so great, why aren't pure monatomic atoms hybridized?</u>
 For an isolated atom, having 1 s and 3 p atomic orbitals is better than 4 sp³ hybrid orbitals
- However, when covalent bonds can result, the small price of hybridizing is paid off a thousandfold by the payoff of making strong, good VSEPR bonds

If hybridization is so great, why aren't all carbons sp^3 hybridized? Why do some stay sp^2 or sp, and withhold some p orbitals from hybridization? • p orbitals are withheld from hybridization for the sole purpose of using them to make π bonds.

- Only when double bonds or triple bonds are involved is the hybridization less than the full sp³ •
- Each π bond requires the attached atoms to use p orbitals

2 Kinds of Covalent Bonds

- sigma (σ) bonds: electron density is along the axis between the nuclei $-\sigma$ bonds always involve the overlap of s or s-containing hybrids (s, sp, sp², sp³)
- pi (π) bonds: electron density is either above/below or before/behind, but not along the internuclear axis
 - π bonds involve the overlap of parallel p orbitals

The first bond in any bond (whether single, double, or triple), is a σ bond. The "extra" bonds in a double or triple bond are π bonds.

Bond σπ

Single 0 1 Double 1 1 Triple 1 2

 π bonds are weaker and more reactive than σ bonds. Most organic reactions involve π bonds

2.7-2.8 Bond Rotations, Structural Isomers, and Stereoisomers

Rotation is <u>allowed</u> for <u>single</u> bonds

- No bonds break, the sigma bond is fine
- Rotation is forbidden for double bonds
- The p-bond overlap breaks, between the two p orbitals that need to be parallel

isomers-different compounds with the same molecular formula.

structural isomers (or constitutional isomers)-isomers that have their atoms connected in a different order.

stereoisomers (or configurational isomers)-isomers in which atoms are joined in the same order but differ in the way their atoms are arranged in space.

- Stereoisomers have the same condensed formula (if not, they aren't stereoisomers)
- Stereoisomers can <u>not</u> be interconverted by bond rotation or by being turned over
- If two things can be interconverted by bond rotation or being turned over, then they aren't stereoisomers!
- Stereoisomers are subdivided into two categories: enantiomers and diastereomers.
 - **<u>Diastereomers</u>**: have <u>cis/trans</u> relationship

• Enantiomers: have mirror image (left hand/right hand) relationship H Br Br H

Problem: For the following pairs of structures, classify whether they are related as <u>same</u>, <u>structural isomers</u>, or <u>stereoisomers</u>.

Chem 350 Jasperse Ch. 2 Notes

2.9 Polarity

-molecular dipole: vector sum of bond and lone-pair dipoles

A simple molecule is totally nonpolar only if:

- 1. Central atom has no lone pairs
- 2. All attached atoms are the same

Practical:

- Lone pairs and O-H or N-H bonds usually dominate
- C-C, C-H, and C-halogen bonds are practically nonpolar or at best only weakly polar

Problems: Classify as totally nonpolar or polar.

a. CO_2 b. CCl_4 c. CH_4 d. C_4H_{10} e. H_2O f. NH_3 g. CH_3CH_2OH h. $CHCl_3$

2.10 Intermolecular Forces and Boiling Points

- 1. Hydrogen bonds (O-H or N-H)
- 2. Dipole-Dipole
 - Much weaker than hydrogen bonds
- 3. London Forces
 - Increases with increasing molecular weight

Intermolecular Forces impact:

- 1. Boiling points and melting points
- 2. Solubility

For Boiling Points:

- 1. If weight is about equal \rightarrow H-bonder > polar > nonpolar
- 2. If H-bonding/polarity is comparable: high mw > lower mw

Problem: Rank the boiling points, 1 being highest

2.11 Polarity and Solubility

2 Practical Rules:

- 1. The more N's or O's in a molecular, the greater it's water solubility
- 2. The more C's, the lower it's water solubility

- Facts/Theory 1. "Like dissolves like"
 - enthalpy and entropy factors ٠

Good solubility	Bad solubility
a. Polar solvent-polar solute	a. Polar solvent-nonpolar solute
b. Nonpolar solvent-nonpolar solute	b. Nonpolar solvent-polar solute

- 2. Water is very polar
- 3. Any molecules with N or O can H-bond with water (even if it can't necessarily H-bond itself) (Rule 1)
- 4. Adding C's adds C-C, C-H nonpolar bonds \rightarrow reduces water solubility (Rule 2)
- 5. Hydrocarbons and halocarbons are insoluble in water
 - Many other organics have low solubility in water
 - Depends on the ratio of nonpolar/polar, N or O to C

Problems: Circle the more water soluble of the following pairs:

Problem: Box the higher boiling in each pair. Does water solubility and boiling point always correspond? Why or why not?

<u>Classification of Organic Compounds</u>. The Functional Groups (Sections 2-12-14) **Hydrocarbons:** C + H only

0. Alkanes and Cycloalkanes

- a. Single bonds only
- b. Names end "ane" (methane, ethane, propane, etc.)
- c. "cycloalkanes": carbon rings
- d. alkanes are considered "nonfunctional"
 - no reactive π -bonds, lone pairs, heteroatoms, or highly polar bonds
- e. an "<u>alkyl group</u>" is <u>part</u> of a molecule that contains only C, H, and single bonds.
 - 1. Basically a part of the molecule that isn't going to be very reactive or "functional"
 - 2. Symbol: R

<u>1. Alkenes C=C</u>

- a. $\operatorname{contain} \overline{C} = C$ double bond
- b. names end "ene" (ethane, propene, butene, etc.)
- c. double bonds can't rotate
 - a. rotation is allowed for single bonds, but is forbidden for double bonds
 - b. Why:
 - 1. a single bond (σ) can rotate freely without compromising orbital overlap
 - 2. But a π -bond cannot rotate freely, because π -overlap breaks
 - The two π -bonded atoms have parallel and overlapping p orbitals. To rotate the bond completely breaks the π -bond half-way through the rotation.
 - The energy price is thus way too high.
- d. Restricted rotation results (sometimes) in cis/trans isomers

- e. A π -bond is much weaker than a σ -bond, and thus is far more reactive. Thus, an alkene is viewed as a "functional group" because it reacts ("functions")
- f. Functional groups and "R" groups:

2. Alkynes: Triple bonds Name end "yne"

3. Aromatics or Arenes: Resonance

- 4. Haloalkanes
 - a. bonds are polarized: R group is δ +, halogen is δ -
 - b. C-X bonds are often rather weak and breakable = "functional"

R-X

Oxygen Compounds

5. Alcohols ROH

- a. Oxygen hybridization and shape: sp³, tetrahedral electron geometry, bent/angular atomic geometry, approximately 109° bond angle
- b. contain OH group attached to an sp³ carbon
- c. names end "ol" (methanol, ethanol, etc.)
- d. Polarity: oxygen is δ -, attached hydrogen and carbon are δ +
- e. Hydrogen-bonding: impacts boiling point and water solubility
- f. Oxygen lone pairs
- Capable of hydrogen bonding to water hydrogens
- Capable of interacting with strong acids (Bronsted acids or Lewis acids = "electrophiles")
- g. The O-H bond is polarized enough so that alcohols are slightly acidic
- Not enough to ionize at all in neutral water, or to any significant degree in NaOH/water
- But acidic enough so that they can be deprotonated by less stable R⁻ or R₂N⁻ anions to form RO⁻ anions

6. Ethers ROR

- a. Oxygen hybridization and shape: sp³, tetrahedral electron geometry, bent/angular atomic geometry, approximately 109° bond angle
- b. Don't hydrogen-bond themselves, so lower boiling than ROH of equal weight.
- c. Oxygen lone pairs do hydrogen-bond to water hydrogens, so decent water solubility
- d. Relatively low reactivity

7,8. Aldehydes, Ketones	C=O	
Aldehydes		Ketones

- a. Have C=O group = <u>"carbonyl group"</u>
- b. Carbonyl carbon: sp^2 , trigonal planar, 120° bond angles
- c. The carbonyl always has two other attachments, of which:
 - Formaldehyde has 2 H's attached to carbonyl
 - Aldehydes have one H attached to carbonyl
 - Ketones have no H's attached to carbonyl.
- d. Carbonyl bond is strongly polarized
 - Highly reactive
 - Highly electrophilic

9. Carboxylic Acids:

- Strong polarity and resonance stabilization of conjugate anions make these fairly acidic.
- Extremely important role in biological pH and biochemistry
- 10. Esters
- without OH bond, esters don't have the hydrogen bonding or acidity of carboxylic acids
- reactivity is similar to aldehydes and ketones, dominated by carbonyl

Nitrogen Compounds

11. Amines

- polar
- usually hydrogen bonders
- Nitrogen lone pairs are basic (primary chemical and biological role)
- Many drugs are amines
- 12. Amides

- polar
- proteins and enzymes consist of multiple amides
- nitrogen is flat, sp^2 , trigonal planar, thanks to resonance
- Nitrogen lone pair is <u>not</u> basic

The Functional Groups, R-Z

Functional Group Z	Name	Suffix (or Prefix) Used in Systematic Name	Nomenc Review	elature
-R	Alkane	-ane	methan-	1C 2C
\geq	Alkene	-ene	propan- butan- pentan- beyon	2C 3C 4C 5C
c <u>==c</u>	Alkyne	-yne	heptan- octan- nonan-	0C 7C 8C 9C
	Arene	not responsible	uccan-	loc
-X (Cl, Br, I, or F)	Haloalkane	halo-		
-OH	Alcohol	-ol		
-OR	Ether	not responsible		
Йн	Aldehyde	-al		
R	Ketone	-one		
ОН	Carboxylic Acid	-oic acid		
OR	Ester	-oate		
NH ₂	Amide	-amide		
-NH ₂	Amine	amino-		