Ch. 15 Conjugated Systems

The General Stabilization Effect of Conjugation (Section 15.1, 2, 3, 8, 9)

		Conjugated (more stable)	Isolated (less stable)	Notes:
1	Cations	(H)	(H)	
2	Radicals	/^•		
3	Anions			
4	Dienes			
5	Ethers	sp^2 , not $sp^3!!$	sp ³	An N or O next to a double bond becomes sp ² . An isolated N or O is sp ³
6	Amines	sp ²	M N sp ³	
7	Esters	O .O. sp ²	o sp ³	
8	Amides	O sp ²	O H N sp ³	Very special, chapter 23, all of biochemistry, proteins, enzymes, etc.
9	Oxyanions (Carboxylates)		$\bigcup_{O} \bigcup_{sp^3}$	Very special, chapter 21
10	Carbanions (Enolates)	O sp ²		Very special, chapter 22
11	Aromatics			Very special, chapters 16 + 17

Conjugation: Anything that is or can be sp² hybridized is stabilized when next to π bonds.

• oxygens, nitrogens, cations, radicals, and anions

- Notes:

 1. Any atom that can be sp² will be sp² when next to a double bond

 2. "Conjugation" is when sp² centers are joined in an uninterrupted series of 3 or more, such that an uninterrupted series of p-orbitals is possible
- 3. Any sp² center has one p orbital

Impact of Conjugation

- 4. **Stability:** Conjugation is **stabilizing** because of p-orbital overlap (Sections 15.2, 4, 7)
 - Note: In the allyl family, <u>resonance = conjugation</u>

- 5. **Reactivity:** Conjugation-induced stability impacts **reactivity** (Sections 15.4-7)
 - If the **product** of a rate-determining step is stabilized, the reaction rate will go **faster** (product stability-reactivity principle)
 - o Common when allylic cations, radicals, or carbanions are involved
 - If the <u>reactant</u> in the rate-determining step is stabilized, the reaction rate will go <u>slower</u> (reactant stability-reactivity principle)
 - Why aromatics are so much less reactive
 - Why ester, amide, and acid carbonyls are less electrophilic than aldehydes or ketones
- 6. Molecular shape (Sections 15.3, 8, 9)
 - The p-orbitals must be aligned in parallel for max overlap and max stability
 - The sp² centers must be coplanar

All four sp² carbons must be flat for the p's to align

7. **Bond Length:** Bonds that look like singles but are actually between conjugated sp² centers are **shorter** than ordinary single bonds

- In amides, esters, and acids, the bond between the carbonyl and the heteroatom is shortened
- 8. **Bond Strength:** Bonds that look like singles but are actually between conjugated sp² centers are **stronger** than ordinary single bonds

- 9. **Bond Rotation Barrier:** Bonds that look like singles but are actually between conjugated have much larger rotation barriers than ordinary single bonds
 - Because in the process of rotating, the p-overlap and its associated stability would be temporarily lost

- 10. **<u>Hybridization</u>**: Conjugated sp² atoms have both sp² and p orbitals. You should always be able to classify the hybridization of **lone pairs on nitrogen and oxygen**.
 - <u>Isolated</u> oxygens or nitrogens: sp³ atom hybridization, sp³ lone-pair hybridization, and tetrahedral, 109° bond angles
 - <u>Conjugated nitrogens</u>: sp² atom hybridization, <u>p lone-pair hybridization</u> (needed for <u>conjugation</u>), and 120° bond angles
 - Conjugated oxygens: sp² atom hybridization, one p lone-pair hybridization (needed for conjugation), one sp² lone-pair, and 120° bond angles

Atom Isolated vs. Conjugated Atom Hybridization Lone-Pair(s) Hybridization

Bond Angles