Note: Many groups can "hydrolyze" to carbonyls

- A carbon with two heteroatoms attached, single-bonded or double-bonded
- A carbon with one heteroatom and one π -bond
- Often base or acid or some special acid assistant helps

F. General Reactivity of Ketones and Aldehydes: Addition Reactions (Section 18.12) Key: Are reaction conditions anionic/basic or cationic/acidic (or perhaps buffered in between?)

- 1. **Anionic Conditions** (when a strong anion is involved)
 - a. General principles review for strongly anionic/basic conditions apply
 - 1. In an anionic mechanism, a strong anion will drive the first step
 - 2. In an anionic mechanism, intermediates should avoid positive charges
 - 3. Recognize anionic species even when they are disguised by a cationic metal counterion.

b. Anionic additions to ketones

- 1. Strong nucleophile required (R^{\bigcirc} , H^{\bigcirc} , HO^{\bigcirc} , ...)
 - Intermediates have negative charge

2. Addition first, protonation second

- 3. Addition is normally irreversible
 - Addition is often strongly exothermic
 - The proton source is often added in a separate laboratory step, because often the anion and the proton are incompatible

2. Cationic Conditions (acid is involved)

- a. General principles review for strongly anionic/basic conditions apply
 - Recipes that involve acid will be cationic
 - In a cationic mechanism, the first step will routinely involve protonation
 - In a cationic mechanism, the last step will frequently involve deprotonation to return to neutral
 - Normally the main step or steps are sandwiched in between the protonation and deprotonation events

b. Cationic additions to ketones

- 1. Weak, neutral nucleophile involved (ROH, HOH...)
- 2. Intermediates have positive charge

3. Protonation first, addition second

- Weak nucleophile is not strong enough to add to neutral carbonyl
- Protonation activates the carbonyl as an electrophile
- 4. A deprotonation step is routinely required following addition, to get back to neutral
- 5. Addition is normally reversible
 - Nucleophile can come back off
 - Nucleophile is normally a reasonable leaving group

3. **Buffer Conditions** (both weak acid and weak base/nucleophile are present at same time)

- RNH₂/H⁺, KCN/HCN...
- Reversibility again applies
- Whether addition comes before protonation, or protonation precedes addition depends on the exact case

4. **Anion Conditions**: Nucleophilic addition versus deprotonation

- Sometimes an anion will function as a base and remove a proton rather than functioning as a nucleophile and adding to the carbonyl
- Comparable to S_N2 versus E2 reactions
- Anion size will again factor, with bulky bases more likely to deprotonate and smaller ones to add
- Chapter 22 will deal with the deprotonation pathway, followed by nucleophilic attack on electrophiles

Addition of R (RMgBr) and H (NaBH₄, LiAlH₄) (Review, Section 18-12, Chapter 10)

Hydride addition.

Note: For RMgBr and LiAlH₄, the basicity of the reagent is too strong to permit a proton source to be present at the same time. Thus the proton source must be added in a subsequent laboratory step. The NaBH₄ is weaker, both as a nucleophile but also as a base.

Draw products from the following reactions.

1°, 2° or 3°?

4 Br
$$\frac{1. \text{ Mg}}{3. \text{ H}_3\text{O}^+}$$

6. Draw the mechanism for reaction 1 above.

Addition of HCN to make "Cyanohydrins" (Section 18-15): Anionic Mechanism

21
$$R' \stackrel{O}{\downarrow}_{R} + HCN \stackrel{KCN}{\longrightarrow}_{R'} \stackrel{OH}{\downarrow}_{R} CN$$

HCN addition, anionic mech.

Draw the product and mechanism for the following:

Mechanistic notes

- 1. Addition first, protonation second
- 2. \bigcirc CN is a good nucleophile, HCN a decent acid
- 3. KCN/HCN represents a <u>buffer situation</u>: weak base/weak acid, not obvious which dominates. But in this case the anion does and it proceeds via anionic mechanism.
- 4. \bigcirc CN is actually used as a catalyst: after the HCN donates proton, the \bigcirc CN is regenerated
- 5. In reality, KCN/HCl or KCN/H₂SO₄ is often used
 - Easier to put together and handle
- 6. Reaction is reversible
 - Strongly favors product cyanohydrin, unless a strongly hindered ketone is used

Draw products

- No Mech Responsibility
- Unique access to 2-hydroxyacids..
- Indirect provides the equivalent ("Synthon") for a [○] CO₂H anion

Draw Products

1.
$$\frac{O}{Ph} + \frac{1. \text{ KCN, HCN}}{2. \text{ H}_2\text{O, H}^+}$$

$$\frac{1. \text{ KCN, HCN}}{2. \text{ H}_2\text{O, H}^+}$$

Reversible Addition of H₂O (H-OH) to Make Hydrates: Addition (and elimination) under Acidic or Basic Conditions (Section 18.14).

- Know mechanism under either base or acid
- Know mechanism for the reverse direction (hydrate to carbonyl) as well

"Hydrates" are present only as transient equilibrium species. They never form to 100% and are never isolable. Always in equilbrium with their aldehyde or ketone.

Anionic

Mech Forward: Addition-Protonation. Nucleophile, anionic mechanism. Reversible. Mech Reverse: Deprotonation-Elimination. Anionic mechanism. Reversible.

Cationic

Mech Forward: Protonation-Addition-deprotonation. Weakly nucleophile, cationic mechanism. Reversible.

Mech Reverse: Protonation-Elimination-deprotonation. Cationic E1-type mechanism. Reversible.

Notes:

- 1. True equilibrium.
- 2. Super unfavorable for ketones, moderately unfavorable for aldehydes
 - Ketone is stabilized more by the two alkyl donors
 - Ketone hydrate is destabilized more by sterics

- 3. <u>Hydrates can never be isolated</u>, because as soon as you try to take them out of water, the drives back to the carbonyl side (LeChatelier's Principle)
- 4. While the hydrate is not present in high concentration, it is often a crucial intermediate in a variety of biological processes
 - We've also seen its importance in the oxidation of 1° alcohols to carboxylic acids using H₂CrO₄ in water.

Draw the ANIONIC addition mechanism

Draw the **CATIONIC** addition mechanism

$$\begin{array}{c}
O \\
H_2O, H
\end{array}$$

$$\begin{array}{c}
OH \\
H
\end{array}$$

Hydrate Hydrolysis (Elimination of Water from Hydrate to Generate Carbonyl)

Draw the **ANIONIC elimination** mechanism

- Deprotonation precedes elimination
- E2-like

$$\begin{array}{cccc} \text{OH} & \text{H}_2\text{O}, & \text{O} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Draw the **CATIONIC elimination** mechanism

- Elimination precedes deprotonation
- E1-like

$$\begin{array}{cccc} OH & H_2O, \ H & O \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Reversible Reaction of ROH to Make Acetals via Hemiacetals. (Section 18.18, 19). Addition/Substitution under Acidic Conditions (Section 18.18, 19). Also know the reverses process, substitution/elimination under acid conditions

Cationic

Mech Forward: Protonation-Addition-deprotonation (hemiacetal) Protonation-elimination-addition-deprotonation (acetal). Weak nucleophile, cationic mechanism. Reversible.

Mech Reverse: Protonation-Elimination-Addition-deprotonation. (hemiacetal) protonation-elimination-deprotonation (aldehyde or ketone). Reversible.

Notes:

- Reactions are reversible
- The "hemiacetal" is an intermediate, and can never be isolated
- The acetal <u>can</u> be isolated. (It is stable in absence of water)
- Equilibrium considerations (LeChatelier's principle) apply. When water is plentiful, things go to the left. When water is scarce or removed, and alcohol is abundant, things drive to the right.
- Use H₂O/H⁺ to hydrolyze an acetal back to an aldehyde or ketone
- Use MeOH/H⁺ to convert an aldehyde to an acetal
- Use HOCH₂CH₂OH/H⁺ to convert a ketone to an acetal
- Aldehydes or ketones can be temporarily "protected" as their acetals, then later "deprotected" by hydrolysis

- 1. While the acetal can be isolated, the hemiacetal cannot
- 2. Four reactions, each with their own mechanism:
 - a. Carbonyl to hemiacetal = acid-catalyzed addition reaction.
 - b. Hemiacetal to acetal = acid-catalyzed substitution reaction (S_N1 -type)
 - c. Acetal back to hemiacetal = acid-catalyzed substitution reaction (S_N1 -type)
 - d. Hemiacetal back to carbonyl = acid-catalyzed elimination (E1-type)

Draw the mechanism

Draw the mechanism

$$\begin{array}{c|c} \hline \text{OMe} & & & \\ \hline \\ \text{HOMe} & & & \\ \hline \\ \text{HOMe} & & \\ \hline \end{array} \begin{array}{c} \text{HOH, H} & \oplus \\ \hline \\ \text{HOMe} \\ \hline \end{array} \end{array}$$

We have now seen three major acid-catalyzed reaction types in this chapter

- 1. Additions (protonate-**add**-deprotonate)
- 2. Eliminations (protonate-<u>eliminate</u>-deprotonate)
- 3. Substitutions (protonate-<u>eliminate-add</u>-deprotonate)

Notice that a protonation/deprotonation sandwiches the key step(s) in each of them

1
$$\xrightarrow{\text{MeOH, H}^{\oplus}}$$
2 $\xrightarrow{\text{HO}^{}}$
 $\xrightarrow{\text{HO}^{}}$

Key Synthetic Notes:

- 1. **Ethylene glycol** works well for making acetals from aldehydes or ketones. Use **ethylene glycol for KETONES.**
 - a. Once the first oxygen adds, the second oxygen is always close by and ready to add
 - b. The cyclic acetal is more stable; even if one oxygen comes off, it can come right back on.
 - c. The cyclic acetal formation is actually more favorable energetically (enthalpy)
 - d. The cyclic acetal also has entropy advantages (entropy)
- 2. Methanol is simpler for making acetals from aldehydes, but often has problems for ketones. Use **methanol for KETONES**
- 3. <u>Selective protection</u>:
 - a. Methanol can be used to protect an aldehyde, while a ketone or ester will go untouched.
 - b. Ethylene glycol can be used to protect a ketone, while an ester will be untouched.

3
$$\stackrel{\text{O}}{\longrightarrow}$$
 $\stackrel{\text{O}}{\longrightarrow}$ $\stackrel{\text{MeOH, H}^{\oplus}}{\longrightarrow}$ $\stackrel{\text{HO}}{\longrightarrow}$ $\stackrel{\text{O}}{\longrightarrow}$ $\stackrel{\text$

5

Equilibrium and Acetals

- 1. Normally favors the carbonyl, especially for ketones
- 2. Push to the acetal side by using excess alcohol
- 3. Push to carbonyl side by using excess water
- 4. Equilibrium improves greatly for cyclic acetals.
- 5. Hemiacetals have a favorable equilibrium if and only if a 5- or 6-ring hemiacetal can form. (This is central to carbovhydrate/sugar chemistry.)

7 OH O MeOH,
$$H^{\oplus}$$

8 OH O H

Weoth, H^{\oplus}

8 OH O H

H

H

H

H

H

Hydrolysis Of cyclic acetal

Hemiacetals, mixed acetals, and Sugar/Carbohydrate Chemistry (interest, not test)

- 1. Acetal or hemiacetal carbons have two single-bond oxygens
- 2. When thinking about an acetal being hydrolyzed, the carbon with two single-bond oxygens hydrolyzes to a carbonyl
- 3. Acetal or hemiacetal carbons are **highly reactive as S_N1 substrates** thanks to cation stabilization by oxygen donor

- 4. Carbohydrates exist as hemiacetals or acetals
- 5. Carbohydrates can polymerize or make complex derivatives via substitution at their acetal carbons

Acetals as Protecting Groups in Synthesis (Section 18-19)

- 1. Reactivity: Aldehydes > Ketones >> Esters
 - a. Aldehydes versus Ketones Why:
 - Sterics, ketones are more cluttered and additions make things worse
 - Electronics, ketones are more stable with two electron-donating groups
 - b. Ketones versus Esters Why:
 - Electronics, the conjugation stabilizes esters

2. Selective protection:

- a. Methanol can be used to protect an aldehyde, while a ketone or ester will go untouched.
- b. Ethylene glycol can be used to protect a ketone, while an ester will be untouched.

Addition of H₂N-Z Reagents (Sections 18-16,17)

Cationic

Mech Forward: Protonation-Addition-deprotonation (aminol) Protonationelimination- deprotonation (imine). Mild nucleophile, cationic mechanism, buffered conditions. Reversible. Note: sometimes addition precedes protonation, or is concerted with protonation.

Mech Reverse: Protonation-Addition-deprotonation (aminol) Protonation-elimination- deprotonation (aldehyde or ketone). Reversible.

- "Z" can be a carbon, nitrogen, oxygen, or hydrogen atom/group.
- The "aminol" can't be isolated, it's only present at equilibrium.
- Equilibrium factors apply. Water drives to the carbonyl side; removal of water drives to the imine side.

2
$$\stackrel{\text{O}}{\vdash}_{\text{H}}$$
 + $\stackrel{\text{H}_2\text{NNH}_2}{\vdash}$ $\stackrel{\text{H}^{\scriptsize\textcircled{\oplus}}}{\vdash}$ Hydrazone (Z = Nitrogen)

3 Ph H +
$$H_2NOH$$
 Oxime (Z = Oxygen)

4 Ph H +
$$\frac{NO_2}{NO_2}$$
 hydrazone 2,4-DNP hydrazone 2,4-DNP $\frac{NO_2}{N-NH}$ hydrazone 2,4-DNP derivative $\frac{N-NH}{N-NH}$ 2,4-dinitrophenylhydrazine Ph H $\frac{NO_2}{N-NH}$

Notes:

6

- 1. C=N species can sometimes be hydrolyzed back to carbonyls by H₂O/H⁺
- 2. "Imines" are frequent biology intermediates
- 3. 2,4-DNP derivatives are easily made and usually crystalline
 - a. reaction of an unknown with DNPH to make a solid DNP-derivative is proof of aldehyde or ketone
 - b. The melting point of DNP-derivatives permits identification

Draw the mechanism for the following:

Draw the mechanism for the following:

- 1. All steps are reversible, under equilibrium control
- 2. I'm writing these as cationic, acid-catalyzed steps
 - a. Conditions are actually buffered;
 - b. $1 \text{ RNH}_2 + 0.5 \text{ H}^+ \rightarrow 0.5 \text{ RNH}_2 + 0.5 \text{ RNH}_3^+ \rightarrow \text{a buffer system.}$
 - c. In some cases, nucleophilic addition addition by the neutral but reactive amines (to give oxyanions) may actually precede protonation

Oxidation of Aldehydes (Section 18.20)

No Mech Responsibility

"Tollens test" is a common chemical test for aldehydes. Ag⁺ undergoes redox reaction with aldeydes to produce shiny Ag metal, or a "silver mirror".

Review: Chromic Acid Oxidation proceeds in water via hydrate

New: Ag⁺ salts oxidize aldehydes in presence of alcohols, ketones

<u>Tollens reagent</u>: Ag(NH₃)₂⁺ Chemical test for <u>aldehydes</u>

• A silver mirror forms

Chemical Tests

Class		DNP	Tollens	H ₂ CrO ₄
Aldehydes	OH			
Ketones				
Alcohols	OH			

Deoxygenation of Ketones and Aldehydes (Section 18-21)

Notes:

- Acidic conditions. Doesn't work well for molecules with acid-sensitive functionality.
- Works best for aromatic carbonyls. Saturated carbonyls are slower and less efficient.
- Acidic nature is complementary to the basic analog below.

No Mech Responsibility

Notes:

 Basic conditions. Doesn't work well for molecules with base-sensitive functionality.

Basic nature is complementary to the acidic analog above.