Chem 360-Jasperse

Chapter 22 (Enolate Chemistry) Reaction Summary

PROTON as ELECTROPHILE

- -Base-catalyzed keto-enol equilibrium
- -know mech (either direction)
- -know impact of substituents on enol concentration

- -Racemization of α-chiral optically active carbonyls
- -Mech

HALOGEN as ELECTROPHILE

3. Ph
$$\frac{\text{excess Br}_2 (Cl_2)}{\text{base}}$$
 Ph $\frac{\text{Ph}}{\text{Br}}$ B

- -Base catalyzed halogenation
- -with excess halogen, all α -hydrogens get replaced
- -Mech

- -Iodoform reaction.
- -chemical test for methyl ketones

5.
$$\frac{\operatorname{Br}_{2}(\operatorname{Cl}_{2})}{\operatorname{acid}}$$

- -Acid-catalyzed halogenation
- -can achieve selective mono-halogenation

ALKYL HALIDE as ELECTROPHILE

- -Enolate alkylation
- -strong LDA base required to completely deprotonate carbonyl
- -Mech
- -Ketones, Esters, Amides, Aldehydes: doesn't matter which kind of carbonyl
- -unsymmetrical ketones give isomer problems
- -S_N2 alkylation restricts R-X to active ones

7. OR
$$\frac{1. \text{ NaOR}}{2. \text{ R-X}}$$
 OR $\frac{H_3O^+, \text{ heat}}{R}$

- -Enolate alkylation of 1,3-ketoester
- -alkoxide base strong enough to completely generate enolate
- -Mech for alkylation
- -S_N2 alkylation restricts R-X
- -position of alkylation is unambiguous
- -acid-catalyzed hydrolysis/decarboxylation

8. RO OR
$$\frac{1. \text{ NaOR}}{2. \text{ R-X}}$$
 RO OR $\frac{H_3O^+, \text{ heat}}{R}$

- -Enolate alkylation of 1,3-diester
- -alkoxide base strong enough to completely generate enolate
- -Mech for alkylation
- -S_N2 alkylation restricts R-X
- -acid catalyzed hydrolysis/decarboxylation
- -Final product is an ACID (Diester → Acid)

- -decarboxylation of a 1,3-carbonyl acid
- -"Z" can be anything so that you end with a ketone, aldehyde, or acid at the end
- -know the mechanism for the decarboxylation, and acid-catalyzed enol to carbonyl isomerization
- -rate will be impacted by stability of the enol intermediate

ALDEHYDE/KETONE as ELECTROPHILE

- -Aldol Reaction
- -Mech

- -Aldol Condensation
- -Ketones as well as Aldehydes can be used
- -In ketone case, unfavorable aldol equilibrium is still drawn off to enone
- -In Aldehyde case, can stop at aldol if you don't heat
- -Mech

- -Aldol dehydration
- -Mech under basic conditions

- -Crossed Aldol (2 different carbonyls)
- -Many variations, but there must be some differentiation so that one acts selectively as the enolate and the other as the electrophile
- -Mech

- -Intramolecular aldol
- -Mech
- -many variations
- -Normally only good for 5, 6-membered rings

ESTER as ELECTROPHILE

- -Claisen Reaction
- -Mech
- -Produces 1,3-ketoester

- -Crossed Claisen
- -May include cyclic Claisen reactions
- -If the "enolate" carbonyl is a ketone, get a 1,3-diketone
- -If the "enolate" carbonyl is an ester, get a 1,3-ketoester
- -Mech

ENONE as ELECTROPHILE

- -Mech
- -"Michael Addition"

- -"Robinson Annulation"
- -Mech
- -Michael addition gives 1,5-dicarbonyl, then intramolecular aldol reaction-dehydration

WITTIG REACTION

-Mech

20.
$$R$$
 R_1 R_2 R_3 R_4 R_4 R_4 R_5 R_4 R_5 R_6 R_6

-Mech