JASPERSE CHEM 360 TEST 4 Ch 19-21 Amines, Carboxylic Acids, Carboxylic Acid Derivatives

- 1. Nomenclature. Provide Either the Name or the Structure for the Following Chemicals. (10 points)
- a. N-ethyl-N-methyl-4-methyl-1-pentanamine N-ethyl-N-methyl-4-methylpentan-1-amine

1 2 1 N

VERSION 3

b. sodium (R)-3-hydroxybutanoate

H OH C

c. 4-methylpentanoyl chloride

d.

cis-2,2-dimethyl-4-hexenoic acid
(Z) (Z)-2,2-dimethylhex-4-enoic acid

e. Joh (R)-4-amino-5-methyl hexanoic acid

f. 43200

ethyl pentanoate

Oops! Ethyl butanoate, □ not pentanoate

2. For each nitrogen a-f, identify the hybridization of the <u>nitrogen atom</u>, and identify the hybridization of the <u>nitrogen lone pair</u>. [Adenine is an important player in information transfer (DNA, RNA, genetics, etc.) and energy storage/release (ATP/ADP).]

Nitrogen Atom	Hybridization of the Nitrogen Atom	Hybridization of the Nitrogen Lone Pair
<u>a</u>	Sp2	Sp2
<u>b</u>	Sp ² Sp ²	P
<u>c</u>	502	sp2
<u>d</u>	Sp2	5/2
<u>e</u>	Sp2	ρ
<u>f</u>	Sp 3	5/3

3. Synthesis Reactions. Draw the feature product of the following reactions (need not show any byproducts). (15 points)

a. Ph Br
$$\frac{1. \text{ Mg}}{2. \text{ CO}_2}$$

c.
$$\frac{0}{2. \text{ H}_3\text{O}^+}$$

$$\frac{1. \text{ LiAlH}_4}{2. \text{ H}_3\text{O}^+}$$

$$OH = HC \longrightarrow OH$$

f. Ph OCH₃
$$\xrightarrow{1. \text{ NaOH, H}_2\text{O}}$$
 $\xrightarrow{\text{Ph}}$ OCH₃

- 4. Synthesis Reactions. Draw the feature product of the following reactions (need not show any byproducts). (15 points)
- a. HO OH cat. H+

Oops, this one is wrong the methyl should be on the back of carbon 2 next to the carbonyl

b. $\frac{1. \text{ HNO}_3, \text{ H}_2\text{SO}_4}{2. \text{ Br}_2 \text{ FeBr}_3}$

4. NaNO₂, HCl 5. CuCN Or Nex BY to oget
stereo right
if you keep
Chival C in
Oviginal
Ovientation

c. Ph OH 2. CH₃CO₂H

- d. OH 1. SOCI₂ OMe
- e. $\frac{1. \text{ KMnO}_4}{2. \text{ excess MeLi}}$ $\frac{1. \text{ KMnO}_4}{3. \text{ H}_3\text{O}^+}$

Oops! These answers are each short one carbon!

Note is a spectator counterion. Needs no consideration in mech.

addn product

6. Provide Reagents for the following Transformations (15 points)

- 7. Which, when dissolved in diethyl ether, will: (5 points each)
- a) Extract into NaOH/H2O?

A+D

(veschance)

b) Extract into HCl/H2O?

B

c) Extract into water?

None

Me₂N B

HO C

8. Hydrolysis Reactions. Draw the starting materials for the following hydrolysis reactions. (6 points)

1. NaOH, H₂O

2. HCl

CO₂H + HO

Ph

1. NaOH, H₂O 2. HCl

9. Rank the following according to their reactivity toward NaOH/ H_2O hydrolysis.

Ph NHCH₃

Ph C OCH₃

Given the structures **A-D** above, which of the following reactions will proceed spontaneously? (2 points)

 $A + H_2NCH_3 \rightarrow B$

 $A + HOCH_3 \rightarrow C$

 $A + HCl \rightarrow D$

Yes Yes No

- 10. Rank the acidity of the following, 1 being most acidic, 3 being least (3 points each)
- a. acetic acid vs. water vs. NH_4 +Cl-
- b. CH_3OH vs. CH_3NH_2 vs. F_2CHOH
- c. p-methoxybenzoic acid vs. benzoic acid vs. acetone
- 11. Rank the basicity of the following, 1 being most basic, 3 being least (3 points each)
- a. CH_3OH vs. $PhNH_2$ vs. CH_3NH_2
- b. O_2N V_S . V_S
- c. $\frac{1}{2}$ (CH₃CH₂)₃N H₂C $\frac{1}{3}$