ORGANIC CHEMISTRY I PROBLEMS

Based on Organic Chemistry (9th Edition) by L. G. Wade Jr Note: if you have the 8th, 7th or 6th edition of Wade, or if you have a Klein textbook as used at NDSU, lists of problems are linked from the following website, or you can email me (jasperse@mnstate.edu) to get the list.) Contact me if that's your situation, or see the following link:

http://web.mnstate.edu/jasperse/Chem350/Other-Textbooks.html •

Note: for some links to buy variably new or perhaps older edition of the textbook and the associated solutions manuals, see: https://web.mnstate.edu/jasperse/Required-Text-and-Materials.pdf

<u>Chapter</u>	Wade Chan	Wade 9 Problems	Wade 9 Problems
<u>I opic</u>	Chap	In the Chapter	Dack of the Chapter
Intro, Structure	1	2a-n, 3a-n, 4, 5a-c, 6(omit boron ones), 7a-e, 8a,b, g, 9a, d, 11, 12, 15b, 16, 17, 18, 19, 22, 24a,b, 25	and #-of-attached-hydrogens), 41a,b,d,e,g, 42a,b,d, 43a,c,
structure	1	12, 150, 10, 17, 10, 17, 22, 2 10,0, 25	44a,b,e, 58a,c,e 59a-f
Bonding			
Donuing			
Acids,	2	5, 6b,c,d,e, 7, 13a,e, 24 (ignore the "cyclo" part), 25, 26(skip d,f),	31 (ignore the solubility-in-water prediction part), 32a-e,
Based,		27 (skip h),	33, 35a,b,e, 36(b,c,d only), 37(ignore HF), 38(ignore first
Functional			57(ignore sulfide)
Groups			(.8)
Alkanes	3	1a, 2a, 3, 4a-d,f 5, 6a,b, 7a,b, 9a, 12, 16a,d,e, 17, 18, 25-27, 29	34, 35, 36(omit c and d), 37 (omit b), 39 (omit e,g,h), 41,
			420, 44, 45a,0, 40, 46, 51
Chemical	4	1a-c, 2, 4a, 9a, 11-13, 18, 19a-d, 24, 25, 28-32.	34-37, 40, 42-45, 47a,b,e
Reactions.			
Stereo	5	2 (label as chiral or achiral. If chiral, also draw the enantiomer.),	25, 26a,c,d,j-p , 27, 30d, f-h 31a, f-i, 36
chemistry		3 (star chiral Us, identify each chiral molecule, and be able to draw the enantiomers) 4.5 (assign as chiral or achiral) 6 [skin	
		f.g. For all others, give the (R)/(S) designations.], 14, 20a-e, 21	
		(skip f), 22, 23c	
Alkyl	6	1, 2c,e,f, 3.1,3, 6, 7 (the density of chloroform is 1.50), 8a, 10	30, 31a,c-e, 32a,b,e,f, 33*, 32("solvolysis" is substitution
Halides:		S _N 2 Reactions: 11-13, 14a,b,d,e, 15(skip b,g), 16, 18 (skip	by solvent, and is always $S_N(1)$, 55 , $57-42$, 45
SN2, SN1,		leaving group) 19a b 20(skin c e f)	
E2, E1		$S_N 1$ Reactions: 22, 23, 24, 25, 27, 29 (very interesting. Probably	
Reactions		not test fodder.)	
Alkenes	7	1 (for b, counting geometric isomers, I count 14 possible alkene	40, 41, 42a-c, 43a,b,d, 44 (for part c: how many rings does
		shows a few of the possibilities) 4 5a b c 6a d e 7a e 8a c e	1t have?), 49a, 50, 52a-c, 53, 56, 57, 58, 61a,
		13b-d (more stable only. Skip the part about how much	
		difference in energy), 16, 17a, 20a,b, 24, 25, 28, 29, 31, 32a,	
A 11	0	33(skip f), 35a,b, 37	A6 (align f is least an add matrice for "mandiat the mandwat"
Alkene	ð	1-4, 0, 8-11, 13-20, 21a-d, 22 (lor b, book answer is poor. Should use a hindered base), 23, 24, 29, 30 (mech for ring-opening only).	reactions.), 47a-1, 49, 50 (good synthesis design practice).
Addition		32b,d, 33, 34b-f, 35 (d,l means racemic mix of chiral products),	51 (skip e,g,i), 56a, b, c,e,f, 61
Reactions		36, 37	
Conjugate	15	$1, 2, 4, 5, 6, 7(\text{skip c}), 9, 10-11(\text{NBS}=\text{Br}_2/\text{hv}), 12, 14, 15 (\text{skip d}), 16 (ignore stereochem) 18$	24, 25a-d,g-1, 27, 30, 31, 33a-f
d Systems	15	10 (ighole steleoenem), 10	
Aromatics	16	3(skip cyclooctatetraene), 5, 7b-d, 8, 12, 15, 16 (pyrrole picture	26a-f, 27a-c, e, f, 28, 32, 34 (hint: N lone pairs are strongly
		on top of page, Fig 16.12), 17 (purine picture in section 16-9c), 19, 24a, c.e.g	basic when sp^3 or sp^2 but weakly basic when p), 35, 36,
			57 ("xylene" means dimetnyl benzene), 43
Aromatic	17	2, $3(p-xy)$ lene is 1,4-dimethylbenzene), 5,6,7,8,11,12,12,14h(ixi), 15, a , 18, 10, 20, a , 42, 44, 46	50a,b,d,f,h,j,l, 52a,b,e,f,g, 53b-f,h,i,j,l, 54, 57, 57, 64
Reactions		3, 0, 7, 0, 11, 12, 13, 140(1-17), 13a, c, 18, 19a, 20a-c, 43, 44, 40, 48	