TEST THREE SKILLS/OBJECTIVES / OUTCOMES / COMPETENCIES

• The list should not be viewed as exhaustive; anything that is addressed in the notes and is not designated either in the notes or in the lectures as "not test responsible" should be considered to be fair game for test assessment.

		TEST THREE: Aldehydes, Ketones, and Enolate Chemistry	Self-	Graded
			Assessment	Assessment
18	Ketones and	1. Nomenclature: Draw and name aldehydes and ketones, including in the context of	1. In-lecture	Sapling
	Aldehydes	multifunctional molecules where decisions about which groups are treated as	problems	homework
		substituents are necessary; or, given a name, be able to draw the structure.	-	
		2. Physical Properties: Predict and rank relative boiling points and solubilities of	2. Practice	Quiz
		carbonyl compounds relative to other organic structures.	sets online	
		3. Carbonyl Synthesis: Process reactions for synthesis of ketones or aldehydes from		Test 3
		alcohols, alkenes, alkynes, carboxylic acids, nitriles, acid chlorides, or aromatic	3. Practice	
		compounds. This could involve predicting a product, specifying a starting material,	Tests	Final Exam
		designating an appropriate reactant, or proposing an effective synthesis. Single-step		
		or multistep reactions may be involved.	Sapling	
		4. Carbonyl Reactions: Predict the products for reactions (including multi-step	homework	
		reactions) of ketones and aldehydes with the following types of compounds:	problems	
		a. Hydride reducing agents (NaBH4, LiAlH4)		
		b. Organomagnesium reagents (Grignard reagents)	5. Book	
		c. HCN	practice	
		d. Water under acid or base conditions (reversible hydrate formation)	problems	
		e. Alcohols (reversible hemiactal and acetal formation, including cyclic		
		hemiacetals and acetals; and the reverse reactions involving acetal		
		hydrolysis)		
		f. Amines (reversible aminol and imine formation, including cyclic aminols		
		and imines, and the reverse reaction involving imine hydrolysis)		
		5. Mechanisms: Be able to draw mechanisms for carbonyl reactions listed above,		
		including the reverse reaction, including those involving rings. Major mechanisms		
		include addition (anionic or acid-catalyzed), elimination, and substitution reactions.		
		6. Demonstrate/apply understanding of whether a mechanism is anionic or cationic.		
		7. Rank the relative reactivities of aldenydes, kelones, and esters.		
		8. Demonstrate understanding/apprication of protection and deprotection procedures.		
		9. Chemical resis. Identify structure based on tests (including DIVF and rollens resis)		
		10. Draw the starting materials that would react to produce a given product.		
		reactions/reactants that could transform the starting material into a target product		
		12 Retrosynthesis: Design syntheses of targets given a restricted nool of allowed		
		starting materials (Presumably involving carbonyls)		
22	Alpha	13 Acid-Base: Predict and rank acidities and basicities of ketones esters and 1 3-	1 In-lecture	Sapling
	Substitutions	dicarbonyl compounds relative to other acids and bases: predict when acid/base	problems	homework
	and	reactions will or won't be product favored; apply understanding of equilibria.	P	
	of Engls and	14. Predict when bases (hydroxide, alkoxide, versus LDA) will afford "complete" versus	2. Practice	Test 3
	Enolate	"small equilibrium" versus zero population of enolate anion	sets online	
		15. Predict the products (multi-reactions sequences may be involved) when enolate		Final Exam
		anions react with the following electrophiles:	3. Practice	
		• Proton (racemization, reversible enol formation)	Tests	
		Halogen (including polyhalogenatin)		
		 Alkyl halides (including usage of LDA as base) 	Sapling	
		 Aldehydes/ketones (aldol reaction resulting in beta-hydroxy carbonyls; aldol 	homework	
		condensations resulting in enones; including intramolecular versions)	problems	
		• Esters (Claisen reactions, including intramolecular versions)		
		16. Mechanisms: Draw mechanisms for each of the above reactions	5. Book	
		17. Predict the product for reactions (including multistep reactions) involving carbonyls	practice	
		and phosophorus ylides (Wittig reaction)	problems	
		18. Process reactions involving 1,3-dicarbonyls, including ester hydrolysis and thermal		
		decarboxylation of 1,3-carbonyl acids.		
		19. Process keto-enol equilibration and mechanism, and rank amounts of enol.		
1		20. Chemical Tests: Identify possible structures for a chemical given a chemical formula		
		and chemical test results (including Iodoform, DNP and Tollens Tests)		
1		21. Draw the starting materials that would react to produce a given product.		
1		22. Synthesis Design: Given a starting chemical, suggest reactants or sequences of		
		reactions/reactants that could transform the starting material into a target product.		
		(Presumably either involving enolate chemistry. Synthesis of alkenes via aldol		
1		concensation or wittig reaction will also be a priority skill.)		
		25. Keirosynthesis: Design syntheses of targets, given a restricted pool of allowed		
1		starting materials.		1