TEST FOUR SKILLS/OBJECTIVES / OUTCOMES / COMPETENCIES

• The list should not be viewed as exhaustive; anything that is addressed in the notes and is not designated either in the notes or in the lectures as "not test responsible" should be considered to be fair game for test assessment.

		the lectures as "not test responsible" should be considere	ů l	
		<u>TEST FOUR</u>	<u>Self-</u> Assessment	<u>Graded</u> Assessment
19	Amines	1. Nomenclature: Name amines, and draw structures given		Sapling
	7 mines	 Physical Properties: Predict and rank relative boiling po 		homework
		solubilities of amines compounds relative to other organi		nomework
		3. Contrast physical properties of amines with those of amr		Test 4
		 Acid-Base: Predict and rank basicities of amines and acid 		
		ammoniums relative to other bases and acids.		Final Exam
		5. Determine nitrogen atom hybridization and lone-pair hybridization	oridizaton; and 3. Practice	
		apply to amine basicity and ammonium acidity.	Tests	
		6. Amine Reactions: Predict the products or identify startir		
		for reactions (including multi-step reactions) of amines,		
		proton donors (acid-base); carbonys (imine formation); a		
		(alkylation and polyalkylation); acid chlorides (amide for		
		carboxylic acids (acylation, amide formation); and carbo		
		presence of H+/NaBH3CN (reductive amination).	5. Book	
		7. Amine Synthesis: Demonstrate understanding of amine	synthesis. practice	
		This could involve predicting a product, specifying a star	ting material, problems	
		designating an appropriate reactant, or proposing an effe	ctive synthesis.	
		Major amine precursors include carbonyls (reductive am		
		or 3° amines possible); amides (1°, 2°, or 3° amines); nitr	o compounds	
		(1°); alkyl halides and ammonia (1°), and nitriles (1°).		
		8. Mechanisms: Be able to draw mechanisms for reactions		
		base reactions; alkylation; polyalkylation; and acylation.		
		9. Draw the starting materials that would react to produce a		
		10. Synthesis Design: Given a starting chemical, suggest rea		
		sequences of reactions/reactants that could transform the	starting	
		material into a target product.		
		11. Retrosynthesis: Design syntheses of targets, given a rest	ricted pool of	
		allowed starting materials.		
20,	Carboxylic	12. Nomenclature: Name carboxylic acids, esters, and carbo		Test 4
21	Acids and	draw structures given names.	problems	
	Carboxylic	13. Physical Properties: Predict and rank relative boiling po		Final Exam
	Acid	solubilities of carboxylic acids relative to other organic s		
	Derivatives	14. Acid-Base: Predict and rank acidity of carboxylic acids	and basicity of online	
		carboxylates relative to other bases and acids.	dite /hanisites 2 Desetion	
		15. Diagnose how electron donors or withdrawers impact ac		
		 Determine which version of an amino acid monomer exi pH's 	sts at different Tests	
		17. Carboxylic Acid Synthesis: Use chemical equations to d	emonstrate 4. Sapling	
		understanding of carboxylic acid synthesis reactions, inc		
		hydrolysis of acid chlorides, anhydrides, esters, or amide	0	
		neutral, acidic, or basic conditions; oxidation of alcohol,		
		alkyl benzenes; carboxylation of Grignard reagents; hydr		
		nitriles; or hydrolysis/decarboxylation of 1,3-diesters.	practice	
		 Carboxylic Acid Reactions: Use chemical equations to c 	1	
		understanding of carboxylic acid reactions, including dir		
		conversion to acid chlorides; anhydrides; esters; amides.		
		19. Interconversions among Carboxylic Acids and Derivativ	es: Use	
		chemical equations to predict products, identify starting		
		design pathways for interconversions between carboxyli		
		chlorides; anhydrides; esters; amides, and carboxylates.		
		20. Mechanisms: Be able to draw mechanisms for interconve	ersions	
		between carboxylic acids, acid chlorides; anhydrides; est		
		and carboxylates, including "downhill" reactions and aci		
		"lateral" conversions within the ClAvENO series.		
		21. Draw the starting materials that would react to produce a	given product.	
		22. Synthesis Design: Given a starting chemical, suggest rea		
	1	sequences of reactions/reactants that could transform the		
		sequences of reactions/reactants that could transform the		
		material into a target product.	2	
			-	