 Psy 230
Independent Samples t-test 
I. Independent Samples 
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Figure 10-3  (p. 314)
Two population distributions. The scores in population I vary from 50 to 70 (a 20-point spread). The scores in population II range from 20 to 30 (a 10-point spread). If you select one score from each of these two populations, the closest two values are X1 = 50 and X2 = 30. The two values that are farthest apart are X1 = 70 and X2 = 20. 
A. Two Sources of Variability (error) 
- each of the two samples will have some error as M represents  
- would be nice to simply add and then average the estimated standard errors from each sample 
- can't (unless samples are the same size) 
 - Pooled Variance --allows the bigger sample to carry more weight in determining the final value 
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B. The formula 
    where
 
 
C. Degrees of Freedom 
df = df1 + df2 
= (n1 - 1) + (n2 - 1) 
D. Assumptions 
1. observations in each sample are independent 
2. underlying populations are normal 
            3. the two populations being compared have equal variances (homogeneity of variance) 
 
II. Single Sample vs. Two Independent Samples
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A developmental psychologist would like to examine the difference in verbal skills for 10-year-old boys vs. 10-year-old girls. A sample of 10 boys and 10 girls is obtained and each child is given a standardized verbal abilities test. Do these data indicate a significant difference in verbal skills for boys compared to girls? Use two-tailed test and set alpha = .05. 
Girls
M = 37
SS = 150
n = 10
Boys
M = 31
SS = 210
n = 10
 
III. Variability and Effect Size
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D.  Effect Size
Important limitation of the hypothesis testing procedure:
 It makes a relative comparison: the size of the treatment effect relative to the difference expected by chance. If the standard error is very small, then the treatment effect can also be very small and still be bigger than chance. 
Therefore, a significant effect does not necessarily mean a big effect. 
 Also, if the sample size is large enough, any treatment effect, no matter how small, can be enough for us to reject the null hypothesis. 
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Figure 8-11 The appearance of a 15-point treatment effect in two different situations. In part (a), the standard deviation is σ = 100 and the 15-point effect is relatively small. In part (b), the standard deviation is σ = 15 and the 15-point effect is relatively large. Cohen’s d uses the standard deviation to help measure effect size. 
Calculating effect size:  
Cohen's d = mean difference / standard deviation
  	d	Evaluation 	
 0.2	Small effect 
	0.5	Medium effect 
       0.8	Large effect 
       1.10                    	Very Large
       1.40                    	Extremely Large
***************************************************************
Alternative effect size for t-tests:  r2
r2 = t2 / (t2 + df)
Advantage to this one is that people are familiar with it.
 Values range from 0.00 to 1.00.
  What proportion of the total variability in the scores is accounted for by the treatment?
Magnitude of  r2	Evaluation 	 
.09 and below	Small effect 
between .09&.25	Medium effect 
over .25	Large effect 
[bookmark: _GoBack] The Relationship between Power and Effect Size
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Think about the following:
Suppose that a researcher normally uses an alpha level of .01 for hypothesis tests, but this time uses an alpha level of .05.
a) What does this change in alpha level do to the amount of power?
b) What does this change in alpha do to the risk of a Type I error?
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Fig. 10.2 Independent-Research Measures Design
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Table 10-1 (p. 316)

The basic elements of a t statistic for the single-sample t and the independent-
measures t.
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Figure 10-7 (p. 327)

Two sample distributions representing two different treatments. These data show a
significant difference between treatments, t(16) =8.62, p < .01, and both measures
of effect size indicate a very large treatment effect, d = 4.10 and /2= 0.82.
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Figure 10-8 (p. 329)

Two sample distributions representing two different treatments. These data show
exactly the same mean difference as the scores in Figure 10.7; however, the
variance has been greatly increased. With the increased variance, there is no longer
a significant difference between treatments, t(16) = 1.59, p > .05, and both measures
of effect size are substantially reduced, d =0.75and r2=0.14.





